Finite Volume Implementation of the Method of Asymptotic Partial Domain Decomposition for the Heat Equation on a Thin Structure

被引:6
作者
Panasenko, G. [1 ]
Viallon, M. -C. [1 ]
机构
[1] Univ Lyon, Inst Camille Jordan, UMR CNRS 5208, Fac Sci & Tech, F-42023 St Etienne 2, France
关键词
Mathematical Physic; Asymptotic Expansion; Control Volume; Heat Equation; Finite Volume Method;
D O I
10.1134/S1061920815020107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unsteady heat equation is considered in thin structures. The asymptotic expansion of the solution constructed earlier is used to evaluate partial derivatives of the solution. The method of partial asymptotic domain decomposition is applied to the unsteady heat equation. It reduces the original 2D model to a hybrid dimension one, partially 2D, partially 1D with some special interface conditions between the 2D and 1D parts. The finite volume method is applied to numerically solve the hybrid dimension model. The error estimate is established. A numerical experiment confirms the theoretical error evaluation.
引用
收藏
页码:237 / 263
页数:27
相关论文
共 24 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]  
Bakhvalov N. S., 1984, HOMOGENISATION AVERA, P366
[3]   The Lions domain decomposition algorithm on non-matching cell-centred finite volume meshes [J].
Cautr'es, R ;
Herbin, R ;
Hubert, F .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (03) :465-490
[4]  
Cole J.D., 1968, Perturbation methods in applied mathematics
[5]   A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids [J].
Domelevo, K ;
Omnes, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06) :1203-1249
[6]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[7]   F.E.M. implementation for the asymptotic partial decomposition [J].
Fontvieille, F. ;
Panasenko, G. P. ;
Pousin, J. .
APPLICABLE ANALYSIS, 2007, 86 (05) :519-536
[8]  
Formaggia L, 2009, MS A MOD SIMUL, V1, P1, DOI 10.1007/978-88-470-1152-6
[9]  
Il'in A. M., 1992, TRANSL MATH MONOGR
[10]  
Kozlov VA., 1999, Asymptotic analysis of fields in a multi-structure