Coarse-grained molecular dynamics simulations of ionic polymer networks

被引:12
|
作者
Dirama, T. E. [1 ]
Varshney, V. [1 ]
Anderson, K. L. [2 ]
Shumaker, J. A. [3 ]
Johnson, J. A. [4 ]
机构
[1] Univ Technol Corp, Div Engn, Dayton, OH 45432 USA
[2] Procter&Gamble Corp Modeling & Simulat, Cincinnati, OH 45252 USA
[3] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[4] USAF, Res Lab, Nonmetall Mat Div, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
关键词
polymer networks; self-healing; ionic bonds; toughness; molecular dynamics simulations; coarse-grained modeling;
D O I
10.1007/s11043-008-9058-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The stress-strain behavior of cross-linked polymeric networks was investigated using molecular dynamics simulations with a coarse-grained representation of the repeating units. The network structure was formed by dynamically cross-linking the reactants placed between two rigid layers comprised of particles of the same type. We studied two types of networks which differ only by one containing ionic pairs that amount to 7% of the total number of bonds present. The stress-strain curves were obtained after imposing deformation in tensile and shear modes to the networks and measuring their stress response. Under both forms of deformations there was improvement in the level of stress that the material could bear. Moreover, the time dependent behavior of the improvement in mechanical properties signified a self-healing mechanism.
引用
收藏
页码:205 / 220
页数:16
相关论文
共 50 条
  • [31] Coarse-Grained Molecular Dynamics Study of the Interface of Polymer Blends
    Aoyagi, Takeshi
    NIHON REOROJI GAKKAISHI, 2009, 37 (02) : 75 - 79
  • [32] Interdiffusion of small molecules into a glassy polymer film via coarse-grained molecular dynamics simulations
    Lin, Enqiang
    You, Xiaorong
    Kriegel, Robert M.
    Moffitt, Ronald D.
    Batra, Romesh C.
    POLYMER, 2017, 115 : 273 - 284
  • [33] Coarse-Grained Simulations of Model Polymer Nanofibres
    Milani, Alberto
    Casalegno, Mose
    Castiglioni, Chiara
    Raos, Guido
    MACROMOLECULAR THEORY AND SIMULATIONS, 2011, 20 (05) : 305 - 319
  • [34] All-Atom and Coarse-Grained Molecular Dynamics Simulations of a Membrane Protein Stabilizing Polymer
    Perlmutter, Jason D.
    Drasler, William J., II
    Xie, Wangshen
    Gao, Jiali
    Popot, Jean-Luc
    Sachs, Jonathan N.
    LANGMUIR, 2011, 27 (17) : 10523 - 10537
  • [35] Representation of coarse-grained potentials for polymer simulations
    Briels, WJ
    Akkermans, RLC
    MOLECULAR SIMULATION, 2002, 28 (1-2) : 145 - 152
  • [36] Coarse-Grained Molecular Dynamics Simulations of Protein-Ligand Binding
    Negami, Tatsuki
    Shimizu, Kentaro
    Terada, Tohru
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2014, 35 (25) : 1835 - 1845
  • [37] Effects of the Absence of Friction in Coarse-Grained Molecular Dynamics Simulations of Clay
    Bandera, Sara
    Morimoto, Tokio
    O'Sullivan, Catherine
    Tangney, Paul
    Angioletti-Uberti, Stefano
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2024, 24 (10)
  • [38] Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes
    Manandhar, Anjela
    Chakraborty, Kaushik
    Tang, Phu K.
    Kang, Myungshim
    Zhang, Pengcheng
    Cui, Honggang
    Loverde, Sharon M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (50): : 10582 - 10593
  • [39] Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations
    Shih, Amy Y.
    Freddolino, Peter L.
    Arkhipov, Anton
    Schulten, Klaus
    JOURNAL OF STRUCTURAL BIOLOGY, 2007, 157 (03) : 579 - 592
  • [40] Multiconfigurational Coarse-Grained Molecular Dynamics
    Sharp, Morris E.
    Vazquez, Francisco X.
    Wagner, Jacob W.
    Dannenhoffer-Lafage, Thomas
    Voth, Gregory A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (05) : 3306 - 3315