Smooth skew morphisms of dihedral groups

被引:12
作者
Wang, Na-Er [1 ,2 ]
Hu, Kan [1 ,2 ]
Yuan, Kai [3 ]
Zhang, Jun-Yang [4 ]
机构
[1] Zhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
[2] Key Lab Oceanog Big Data Min & Applicat Zhejiang, Zhoushan 316022, Zhejiang, Peoples R China
[3] Capital Normal Univ, Sch Math, Beijing 100037, Peoples R China
[4] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley map; skew morphism; smooth subgroup; REGULAR CAYLEY MAPS; CLASSIFICATION;
D O I
10.26493/1855-3974.1475.3d3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A skew morphism phi of a finite group A is a permutation on A fixing the identity element of A and for which there exists an integer-valued function pi on A such that phi(ab) = phi(a)phi(pi(a))(b) for all a, b is an element of A. In the case where pi(phi(a)) = pi(a), for all a is an element of A, the skew morphism is smooth. The concept of smooth skew morphism is a generalization of that of t-balanced skew morphism. The aim of this paper is to develop a general theory of smooth skew morphisms. As an application we classify smooth skew morphisms of dihedral groups.
引用
收藏
页码:527 / 547
页数:21
相关论文
共 42 条
  • [21] Regular Cayley maps on dihedral groups with the smallest kernel
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (04) : 831 - 847
  • [22] Skew product groups for monolithic groups
    Bachraty, Martin
    Conder, Marston
    Verret, Gabriel
    ALGEBRAIC COMBINATORICS, 2022, 5 (05): : 785 - 802
  • [23] Regular Cayley maps for dihedral groups
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 148 : 84 - 124
  • [24] Enumeration of Cubic Cayley Graphs on Dihedral Groups
    Huang, Xue Yi
    Huang, Qiong Xiang
    Lu, Lu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (07) : 996 - 1010
  • [25] Locally primitive Cayley graphs of dihedral groups
    Pan, Jiangmin
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 39 - 52
  • [26] Classification of reflexible Cayley maps for dihedral groups
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 127 : 187 - 204
  • [27] ON POINTED HOPF ALGEBRAS OVER DIHEDRAL GROUPS
    Fantino, Fernando
    Andres Garcia, Gaston
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) : 69 - 91
  • [28] Enumerating Cayley (di-)graphs on dihedral groups
    Huang, Xueyi
    Huang, Qiongxiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (04)
  • [29] Regular Cayley maps on dihedral groups with the smallest kernel
    István Kovács
    Young Soo Kwon
    Journal of Algebraic Combinatorics, 2016, 44 : 831 - 847
  • [30] Universal deformation rings and dihedral 2-groups
    Bleher, Frauke M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 225 - 237