Smooth skew morphisms of dihedral groups

被引:12
作者
Wang, Na-Er [1 ,2 ]
Hu, Kan [1 ,2 ]
Yuan, Kai [3 ]
Zhang, Jun-Yang [4 ]
机构
[1] Zhejiang Ocean Univ, Dept Math, Zhoushan 316022, Zhejiang, Peoples R China
[2] Key Lab Oceanog Big Data Min & Applicat Zhejiang, Zhoushan 316022, Zhejiang, Peoples R China
[3] Capital Normal Univ, Sch Math, Beijing 100037, Peoples R China
[4] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley map; skew morphism; smooth subgroup; REGULAR CAYLEY MAPS; CLASSIFICATION;
D O I
10.26493/1855-3974.1475.3d3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A skew morphism phi of a finite group A is a permutation on A fixing the identity element of A and for which there exists an integer-valued function pi on A such that phi(ab) = phi(a)phi(pi(a))(b) for all a, b is an element of A. In the case where pi(phi(a)) = pi(a), for all a is an element of A, the skew morphism is smooth. The concept of smooth skew morphism is a generalization of that of t-balanced skew morphism. The aim of this paper is to develop a general theory of smooth skew morphisms. As an application we classify smooth skew morphisms of dihedral groups.
引用
收藏
页码:527 / 547
页数:21
相关论文
共 42 条
  • [1] Smooth skew morphisms on semi-dihedral groups
    Meng, Wei
    Lu, Jiakuan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (04) : 1031 - 1060
  • [2] Smooth skew morphisms of dicyclic groups
    Hu, Kan
    Ruan, Dongyue
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (04) : 1119 - 1134
  • [3] A classification of skew morphisms of dihedral groups
    Hu, Kan
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF GROUP THEORY, 2022, : 547 - 569
  • [4] On the skew-morphisms of dihedral groups
    Zhang, Jun-Yang
    Du, Shaofei
    JOURNAL OF GROUP THEORY, 2016, 19 (06) : 993 - 1016
  • [5] Smooth skew morphisms of dicyclic groups
    Kan Hu
    Dongyue Ruan
    Journal of Algebraic Combinatorics, 2022, 56 : 1119 - 1134
  • [6] Classification of cyclic groups underlying only smooth skew morphisms
    Hu, Kan
    Kovacs, Istvan
    Kwon, Young Soo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (04) : 849 - 862
  • [7] Cyclic complements and skew morphisms of groups
    Conder, Marston D. E.
    Jajcay, Robert
    Tucker, Thomas W.
    JOURNAL OF ALGEBRA, 2016, 453 : 68 - 100
  • [8] Quotients of skew morphisms of cyclic groups
    Bachraty, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2024, 24 (02)
  • [9] RECIPROCAL SKEW MORPHISMS OF CYCLIC GROUPS
    Hu, K.
    Nedela, R.
    Wang, N-E
    Yuan, K.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (02): : 305 - 318
  • [10] Observations about skew morphisms of cyclic groups
    Bachraty, Martin
    Hagara, Michal
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (01)