Formation of epitaxial gold nanoislands on (100) silicon

被引:55
作者
Piscopiello, Emanuela [1 ]
Tapfer, Leander [1 ]
Antisari, Marco Vittori [2 ]
Paiano, Pasquale [3 ,4 ]
Prete, Paola [5 ]
Lovergine, Nicola [3 ,4 ]
机构
[1] ENEA, Dept Adv Phys Technol & New Mat, FIM, I-72100 Brindisi, Italy
[2] ENEA, Dept Adv Phys Technol & New Mat, FIM, I-00060 Rome, Italy
[3] Univ Salento, CNISM Res Unit Lecce, I-73100 Lecce, Italy
[4] Univ Salento, Dept Innovat Engn, I-73100 Lecce, Italy
[5] CNR, Inst Microelect & Microsyst, I-73100 Lecce, Italy
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevB.78.035305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coherent gold nanoislands were prepared directly on (100)-oriented Si substrates by a physical methodology, consisting of the thermal evaporation of a very thin Au film (t similar to 2 nm) and its successive annealing in the temperature range 350 degrees C < T < 814 degrees C. We found that at annealing temperature of 814 degrees C and in the presence of residual oxygen during the annealing process, epitaxial monocrystalline gold nanoislands embedded in the Si lattice are formed. The crystallographic orientation and epitaxial relationship between the Au nanoislands and the Si lattice are well defined. In contrast, at lower annealing temperatures, namely at 350 degrees C and 626 degrees C, the nanoislands are randomly oriented without epitaxial relationships. The morphology, orientation, and crystalline structure of Au nanoislands were investigated by scanning and high-resolution transmission electron microscopy and grazing-incidence x-ray diffraction. A model of the epitaxial Au nanoisland formation on (100)Si is presented in which the Si-atom out-diffusion and the formation of a liquid Au-Si droplet during the annealing process (increasing temperature) and the Si redeposition and oxidation (i.e., SiO(x) complex formation and removing of the excess Si in the gold islands) during the cooling process (decreasing temperature) play a fundamental role.
引用
收藏
页数:7
相关论文
共 42 条
[31]   Sawtooth faceting in silicon nanowires [J].
Ross, FM ;
Tersoff, J ;
Reuter, MC .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[32]   Growth of one-dimensional nanostructures in MOVPE [J].
Seifert, W ;
Borgström, M ;
Deppert, K ;
Dick, KA ;
Johansson, J ;
Larsson, MW ;
Mårtensson, T ;
Sköld, N ;
Svensson, CPT ;
Wacaser, BA ;
Wallenberg, LR ;
Samuelson, L .
JOURNAL OF CRYSTAL GROWTH, 2004, 272 (1-4) :211-220
[33]   Surface crystallization in a liquid AuSi alloy [J].
Shpyrko, OG ;
Streitel, R ;
Balagurusamy, VSK ;
Grigoriev, AY ;
Deutsch, M ;
Ocko, BM ;
Meron, M ;
Lin, BH ;
Pershan, PS .
SCIENCE, 2006, 313 (5783) :77-80
[34]   Surface diffusion of Au on Si(111):: A microscopic study [J].
Slezák, J ;
Ondrejcek, M ;
Chvoj, Z ;
Cháb, V ;
Conrad, H ;
Heun, S ;
Schmidt, T ;
Ressel, B ;
Prince, KC .
PHYSICAL REVIEW B, 2000, 61 (23) :16121-16128
[35]   Au nanoparticles prepared by physical method on Si and sapphire substrates for biosensor applications [J].
Spadavecchia, J ;
Prete, P ;
Lovergine, N ;
Tapfer, L ;
Rella, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (37) :17347-17349
[36]   Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles [J].
Sun, SQ ;
Mendes, P ;
Critchley, K ;
Diegoli, S ;
Hanwell, M ;
Evans, SD ;
Leggett, GJ ;
Preece, JA ;
Richardson, TH .
NANO LETTERS, 2006, 6 (03) :345-350
[37]   A LOW-ENERGY ELECTRON-MICROSCOPY STUDY OF THE SYSTEM SI(111)-AU [J].
SWIECH, W ;
BAUER, E ;
MUNDSCHAU, M .
SURFACE SCIENCE, 1991, 253 (1-3) :283-296
[38]   Single-walled carbon nanotube growth from highly activated metal nanoparticles [J].
Takagi, Daisuke ;
Homma, Yoshikazu ;
Hibino, Hiroki ;
Suzuki, Satoru ;
Kobayashi, Yoshihiro .
NANO LETTERS, 2006, 6 (12) :2642-2645
[39]   Room-temperature transistor based on a single carbon nanotube [J].
Tans, SJ ;
Verschueren, ARM ;
Dekker, C .
NATURE, 1998, 393 (6680) :49-52
[40]   Quantized conductance atomic switch [J].
Terabe, K ;
Hasegawa, T ;
Nakayama, T ;
Aono, M .
NATURE, 2005, 433 (7021) :47-50