A note of vertex arboricity of planar graphs without 4-cycles intersecting with 6-cycles

被引:10
作者
Cui, Xuyang [1 ]
Teng, Wenshun [1 ]
Liu, Xing [1 ]
Wang, Huijuan [1 ]
机构
[1] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
关键词
Intersecting; Planar graphs; Vertex arboricity; POINT-ARBORICITY;
D O I
10.1016/j.tcs.2020.06.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The vertex arboricity va(G) of G is the smallest integer k which the acyclic partition of V (G) make the vertex set V (G) be partitioned into k subsets which each subset induces an acyclic graph. In this paper, we mainly study vertex arboricity of planar graphs, and we prove that if there is without 4-cycles intersecting with 6-cycles, then va(G) <= 2 (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2019, IEEE ACCESS, DOI DOI 10.1109/ACCESS.2019.2924052
[2]  
Bickle A., 2019, AKCE INT J GRAPHS CO
[3]  
Cai H., 2017, J COMB OPTIM, V35, P365
[4]   POINT-ARBORICITY OF A GRAPH [J].
CHARTRAND, G ;
KRONK, HV ;
WALL, CE .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :169-+
[5]   POINT-ARBORICITY OF PLANAR GRAPHS [J].
CHARTRAND, G ;
KRONK, HV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P) :612-+
[6]   Vertex-arboricity of planar graphs without intersecting triangles [J].
Chen, Min ;
Raspaud, Andre ;
Wang, Weifan .
EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) :905-923
[7]  
Choi I., 2013, J DISCRETE MATH, V333, P101
[8]   Vertex arboricity of planar graphs without chordal 6-cycles [J].
Huang, Danjun ;
Wang, Weifan .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (02) :258-272
[9]   On the vertex-arboricity of planar graphs without 7-cycles [J].
Huang, Danjun ;
Shiu, Wai Chee ;
Wang, Weifan .
DISCRETE MATHEMATICS, 2012, 312 (15) :2304-2315
[10]   On the vertex-arboricity of K5-minor-free graphs of diameter 2 [J].
Huang, Fei ;
Wang, Xiumei ;
Yuan, Jinjiang .
DISCRETE MATHEMATICS, 2014, 322 :1-4