Effect of laser mode on microstructure and corrosion resistance of 316L stainless steel weld joint

被引:19
作者
Yan, Shenghong [1 ,2 ]
Shi, Yan [1 ,2 ]
Liu, Jia [1 ,2 ]
Ni, Cong [1 ,2 ]
机构
[1] Changchun Univ Sci & Technol, Sch Mech & Elect Engn, 7089 Weixing Rd, Changchun 130022, Jilin, Peoples R China
[2] Natl Base Int Sci & Technol Cooperat Opt, Changchun 130022, Jilin, Peoples R China
关键词
316L stainless steel; The Nd:YAG laser; The Slab CO2 laser; Microstructure; Heat input; Ferrite; Corrosion resistance; HEAT-AFFECTED ZONE; PITTING CORROSION; AISI; 316L; MECHANICAL-PROPERTIES; BEHAVIOR; EVOLUTION; SUSCEPTIBILITY; PRECIPITATION; PREDICTION; STRENGTH;
D O I
10.1016/j.optlastec.2019.01.023
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The different welding methods can produce weld joints with different microstructure, mechanical properties and corrosion resistance. The purpose of this paper is to investigate differences of two kinds of weld joints that prepared by the Nd:YAG and the Slab CO2 lasers welding 316L stainless steel. The macroscopic, microscopic structure and corrosion resistance of the weld joints are characterized by optical microscope, scanning electron microscope (SEM) and electrochemical workstation. The results show that compare with the weld joint of the Slab CO2 laser, the Nd:YAG laser with the larger dimension of weld metal zone and heat affected zone, and the dendrite arm spacing (DAS) and secondary dendritic arm spacing (SDAS) are larger on both sides of the weld metal under the heat input is the same. More ferrite and carbide precipitate in the heat affected zone of the Nd:YAG laser, which contributes to the corrosion resistance of the entire welded joint is worse. The grain size in the center of the Slab CO2 laser weld metal is coarser results in the corrosion resistance of its weld metal inferior to the Nd:YAG laser.
引用
收藏
页码:428 / 436
页数:9
相关论文
共 42 条
[1]   The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L [J].
AghaAli, Iman ;
Farzam, Mansour ;
Golozar, Mohammad Ali ;
Danaee, Iman .
MATERIALS & DESIGN, 2014, 54 :331-341
[2]   Through-thickness microstructure and mechanical properties of electron beam welded 20 mm thick AISI 316L austenitic stainless steel [J].
Alali, M. ;
Todd, I. ;
Wynne, B. P. .
MATERIALS & DESIGN, 2017, 130 :488-500
[3]   Microstructure, heat treatment and pitting corrosion of 13CrNiMo plate and weld metals [J].
Bilmes, P. D. ;
Llorente, C. L. ;
Mendez, C. M. ;
Gervasi, C. A. .
CORROSION SCIENCE, 2009, 51 (04) :876-881
[4]   Microstructure-sensitive modeling of pitting corrosion: Effect of the crystallographic orientation [J].
Brewick, Patrick T. ;
Kota, Nithya ;
Lewis, Alexis C. ;
DeGiorgi, Virginia G. ;
Geltmacher, Andrew B. ;
Qidwai, Siddiq M. .
CORROSION SCIENCE, 2017, 129 :54-69
[5]  
Chen, 2000, PROCESS CONT INSPECT, P1
[6]  
[陈虹 Chen Hong], 2005, [激光杂志, Laser Journal], V26, P79
[7]   Effect of TIG welding on corrosion behavior of 316L stainless steel [J].
Dadfar, M. ;
Fathi, M. H. ;
Karimzadeh, F. ;
Dadfar, M. R. ;
Saatchi, A. .
MATERIALS LETTERS, 2007, 61 (11-12) :2343-2346
[8]  
Dayou L., 1988, RAD HEAT TRANSFER EN
[9]   Stress corrosion cracking in the heat affected zone of a stainless steel 308L-316L weld joint in primary water [J].
Dong, Lijin ;
Peng, Qunjia ;
Han, En-Hou ;
Ke, Wei ;
Wang, Lei .
CORROSION SCIENCE, 2016, 107 :172-181
[10]  
[杜祥永 Du Xiangyong], 2015, [热加工工艺, Hot Working Technology], V44, P17