AN APPROXIMATION TO THE ENTROPY FOR QUANTUM DECAYING STATES

被引:1
|
作者
Civitarese, Osvaldo [1 ]
Gadella, Manuel [2 ]
机构
[1] Univ Nacl La Plata, Dept Phys, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Valladolid, Dept FTAO, Valladolid 46071, Spain
关键词
Quantum unstable states; entropy; path integrals; MECHANICS;
D O I
10.1142/S0219887813600098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The concept of entropy was initially defined for systems with thermodynamical equilibrium. We try to extend this notion for quantum non-relativistic decaying states. We use a technique based on path integration on coherent states in order to obtain an approximation to the entropy of a decaying state.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Entropy, universal coding, approximation, and bases properties
    Kerkyacharian, G
    Picard, D
    CONSTRUCTIVE APPROXIMATION, 2003, 20 (01) : 1 - 37
  • [22] Entropy, Universal Coding, Approximation, and Bases Properties
    Gérard Kerkyacharian
    Dominique Picard
    Constructive Approximation , 2003, 20 : 1 - 37
  • [23] Dynamics of a quantum wave emitted by a decaying and evanescent point source
    Delgado, F.
    Muga, J. G.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 74 : 108 - 114
  • [24] On Entropy Transmission for Quantum Channels
    Ganikhodjaev, Nasir
    Mukhamedov, Farrukh
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2007, 1 (03): : 275 - 286
  • [25] An entropy function of a quantum channel
    Yanjun Chu
    Fang Huang
    Ming-Xiao Li
    Zhu-Jun Zheng
    Quantum Information Processing, 22
  • [26] Quantum Chaos and Dynamical Entropy
    Fabio Benatti
    Thomas Hudetz
    Andreas Knauf
    Communications in Mathematical Physics, 1998, 198 : 607 - 688
  • [27] Information and Entropy in Quantum Brownian MotionThermodynamic Entropy versus von Neumann Entropy
    Christian Hörhammer
    Helmut Büttner
    Journal of Statistical Physics, 2008, 133 : 1161 - 1174
  • [28] An entropy function of a quantum channel
    Chu, Yanjun
    Huang, Fang
    Li, Ming-Xiao
    Zheng, Zhu-Jun
    QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [29] Maximum Geometric Quantum Entropy
    Anza, Fabio
    Crutchfield, James P.
    ENTROPY, 2024, 26 (03)
  • [30] Entropy in Foundations of Quantum Physics
    Pawlowski, Marcin
    ENTROPY, 2020, 22 (03)