Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization

被引:27
作者
Makela, Niko [1 ,2 ]
Stenroos, Matti [1 ]
Sarvas, Jukka [1 ]
Ilmoniemi, Risto J. [1 ,2 ]
机构
[1] Aalto Univ, Sch Sci, Dept Neurosci & Biomed Engn NBE, Espoo, Finland
[2] Helsinki Univ Hosp, HUS Med Imaging Ctr, BioMag Lab, Helsinki, Finland
基金
芬兰科学院;
关键词
Magnetoencephalography; Electroencephalography; MEG; EEG; Source localization; Inverse methods; Multiple sources; MINIMUM-VARIANCE BEAMFORMERS; EEG/MEG DATA; HUMAN BRAIN; RECONSTRUCTION; MODEL; MAGNETOENCEPHALOGRAPHY; LOCATION; SKULL; HEAD;
D O I
10.1016/j.neuroimage.2017.11.013
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Electrically active brain regions can be located applying MUltiple SIgnal Classification (MUSIC) on magneto-or electroencephalographic (MEG; EEG) data. We introduce a new MUSIC method, called truncated recursively-applied-and-projected MUSIC (TRAP-MUSIC). It corrects a hidden deficiency of the conventional RAP-MUSIC algorithm, which prevents estimation of the true number of brain-signal sources accurately. The correction is done by applying a sequential dimension reduction to the signal-subspace projection. We show that TRAP-MUSIC significantly improves the performance of MUSIC-type localization; in particular, it successfully and robustly locates active brain regions and estimates their number. We compare TRAP-MUSIC and RAP-MUSIC in simulations with varying key parameters, e.g., signal-to-noise ratio, correlation between source time-courses, and initial estimate for the dimension of the signal space. In addition, we validate TRAP-MUSIC with measured MEG data. We suggest that with the proposed TRAP-MUSIC method, MUSIC-type localization could become more reliable and suitable for various online and offline MEG and EEG applications.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 38 条
[1]   ESTIMATES OF VISUALLY EVOKED CORTICAL CURRENTS [J].
AHLFORS, SP ;
ILMONIEMI, RJ ;
HAMALAINEN, MS .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1992, 82 (03) :225-236
[2]  
[Anonymous], 2017, BRAIN STIMUL
[3]   Fast transient networks in spontaneous human brain activity [J].
Baker, Adam P. ;
Brookes, Matthew J. ;
Rezek, Iead A. ;
Smith, Stephen M. ;
Behrens, Timothy ;
Smith, Penny J. Probert ;
Woolrich, Mark .
ELIFE, 2014, 3
[4]   NEUROFEEDBACK AND BRAIN-COMPUTER INTERFACE: CLINICAL APPLICATIONS [J].
Birbaumer, Niels ;
Murguialday, Ander Ramos ;
Weber, Cornelia ;
Montoya, Pedro .
BRAIN MACHINE INTERFACES FOR SPACE APPLICATIONS: ENHANCING ASTRONAUT CAPABILITIES, 2009, 86 :107-117
[5]   Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach [J].
Birot, Gwenael ;
Albera, Laurent ;
Wendling, Fabrice ;
Merlet, Isabelle .
NEUROIMAGE, 2011, 56 (01) :102-113
[6]   Beamformer reconstruction of correlated sources using a modified source model [J].
Brookes, Matthew J. ;
Stevenson, Claire M. ;
Barnes, Gareth R. ;
Hillebrand, Arjan ;
Simpson, Michael. I. G. ;
Francis, Susan T. ;
Morris, Peter G. .
NEUROIMAGE, 2007, 34 (04) :1454-1465
[7]   Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach [J].
Cheyne, D ;
Bakhtazad, L ;
Gaetz, W .
HUMAN BRAIN MAPPING, 2006, 27 (03) :213-229
[8]   Modeling of the Human Skull in EEG Source Analysis [J].
Dannhauer, Moritz ;
Lanfer, Benjamin ;
Wolters, Carsten H. ;
Knoesche, Thomas R. .
HUMAN BRAIN MAPPING, 2011, 32 (09) :1383-1399
[9]  
Dinh C., 2014, BIOMED ENG, V59, pS949
[10]  
Dinh C., 2012, BIOMED ENG, V57, P813