A-coupled-expanding and distributional chaos

被引:4
作者
Kim, Cholsan [1 ,2 ]
Ju, Hyonhui [2 ]
Chen, Minghao [1 ]
Raith, Peter [3 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
[3] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
中国国家自然科学基金;
关键词
Chaos; Coupled-expanding map; Distributional chaos; MAPS;
D O I
10.1016/j.chaos.2015.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of A-coupled-expanding maps is one of the more natural and useful ideas generalized from the horseshoe map which is commonly known as a criterion of chaos. It is well known that distributional chaos is one of the concepts which reflect strong chaotic behavior. In this paper, we focus on the relationship between A-coupled-expanding and distributional chaos. We prove two theorems which give sufficient conditions for a strictly A-coupled-expanding map to be distributionally chaotic in the senses of two kinds, where A is an m x m irreducible transition matrix. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:291 / 295
页数:5
相关论文
共 24 条
[1]   The three versions of distributional chaos [J].
Balibrea, F ;
Smítal, J ;
Stefánková, M .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1581-1583
[2]  
Block LS., 1992, LECT NOTES MATH
[3]  
Forti G.L, 2005, AEQUATIONES MATH, V70, P1, DOI [10.1007/s00010-005-2771-0, DOI 10.1007/S00010-005-2771-0]
[4]  
Guan J, PREPRINT
[5]   COUPLED-EXPANDING MAPS AND MATRIX SHIFTS [J].
Kulczycki, Marcin ;
Oprocha, Piotr .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01)
[6]   Devaney's chaos implies distributional chaos in a sequence [J].
Liu, Heng ;
Wang, Lidong ;
Chu, Zhenyan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :6144-6147
[7]  
Misiurewicz M., 1979, Bull. Acad. Pol. Sci., Ser. Sci. Math., V27, P167
[8]  
Misiurewicz M, 1978, DYNAMICAL SYSTEMS
[9]   Relations between distributional and Devaney chaos [J].
Oprocha, Piotr .
CHAOS, 2006, 16 (03)
[10]   Distributional chaos via semiconjugacy [J].
Oprocha, Piotr ;
Wilczynski, Pawel .
NONLINEARITY, 2007, 20 (11) :2661-2679