p-LAPLACE EQUATIONS WITH MULTIPLE CRITICAL EXPONENTS AND SINGULAR CYLINDRICAL POTENTIAL

被引:3
作者
Sun, Xiaomei [1 ,2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
基金
美国国家科学基金会;
关键词
p-Laplace equation; cylindrical potential; critical exponents; LINEAR ELLIPTIC-EQUATIONS; GLOBAL COMPACTNESS RESULT; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1016/S0252-9602(13)60066-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with the following problem: {-Delta(p)u - lambda vertical bar y vertical bar(-p)vertical bar u vertical bar(p-2)u = vertical bar y vertical bar(-s)vertical bar u vertical bar(p)*((s)-2)u+ vertical bar u vertical bar(p)*(-2)u in R-n, y not equal 0, u >= 0, where u(x) = u(y, z) :R-m x RN-m -> R, N >= 3, 2 < m < N, 1 < p < m, lambda < (m-p/p)(p) and 0 < s < p, p* (s) = P(N-s)/N-p, p* = pN/N-p. By variational method, we prove the existence of a nontrivial weak solution when 0 < lambda < (m - p/p)(p) and the existence of a cylindrical weak solution when lambda < 0.
引用
收藏
页码:1099 / 1112
页数:14
相关论文
共 30 条
[1]  
Abdellaoui B., 2006, Boll. UMI, V9-B, P445
[2]   Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian [J].
Alves, CO .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (07) :1187-1206
[3]  
[Anonymous], RIV MAT IBEROAMERICA
[4]  
[Anonymous], 1996, ADV DIFFER EQU-NY
[5]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[6]  
Badiale M., 2007, Adv. Differ. Equ, V12, P1321
[7]  
Badiale M, 2007, J EUR MATH SOC, V9, P355
[8]   Hardy-Sobolev-Maz'ya type equations in bounded domains [J].
Bhakta, M. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :119-139
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490