Influence properties of trilinear partial least squares regression

被引:4
作者
Serneels, S
Geladi, P
Moens, M
Blockhuys, F
Van Espen, PJ
机构
[1] Univ Instelling Antwerp, Dept Scheikunde, Dept Chem, B-2610 Antwerp, Belgium
[2] Swedish Univ Agr Sci, Unit Biomass Technol & Chem, S-90183 Umea, Sweden
关键词
trilinear partial least squares; tri-PLS1; influence function; multilinear calibration; outlier diagnosis; squared influence diagnostic plot;
D O I
10.1002/cem.928
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we derive an algorithm to compute the influence function for tri-PLS1 regression. Based on the influence function, we propose the squared influence diagnostic plot to assess the influence of individual samples on calibration and prediction. We illustrate the applicability of the squared influence diagnostic plot for tri-PLS1 to two different data sets which have previously been reported in literature. Finally we note that from the influence function, a new estimate of prediction variance can be obtained. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:405 / 411
页数:7
相关论文
共 20 条
[1]  
ABERG P, 2000, MULTIWAY ANAL BATCH
[2]  
[Anonymous], 2004, MULTIWAY ANAL APPL C
[3]  
Bro R, 1996, J CHEMOMETR, V10, P47, DOI 10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO
[4]  
2-C
[5]  
Cook R.D., 1982, Residuals and Influence in Regression, P101
[6]   Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies [J].
Croux, C ;
Haesbroeck, G .
BIOMETRIKA, 2000, 87 (03) :603-618
[7]   Standard error of prediction for multiway PLS 1. Background and a simulation study [J].
Faber, NM ;
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 61 (1-2) :133-149
[8]   Three-way modelling of a batch organic synthesis process monitored by near infrared spectroscopy [J].
Geladi, P ;
Åberg, P .
JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2001, 9 (01) :1-9
[9]  
Hampel F. R., 1986, ROBUST STAT APPROACH
[10]   Diagnostic plots for robust multivariate methods [J].
Pison, G ;
Van Aelst, S .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (02) :310-329