Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana

被引:245
作者
Geisler-Lee, Jane [1 ]
Wang, Qiang [2 ]
Yao, Ying [4 ]
Zhang, Wen [4 ]
Geisler, Matt [1 ]
Li, Kungang [4 ]
Huang, Ying [4 ]
Chen, Yongsheng [4 ]
Kolmakov, Andrei [3 ]
Ma, Xingmao [2 ]
机构
[1] So Illinois Univ, Dept Plant Biol, Carbondale, IL 62901 USA
[2] So Illinois Univ, Dept Civil & Environm Engn, Carbondale, IL 62901 USA
[3] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
[4] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
关键词
Arabidopsis thaliana; silver nanoparticles; particle size; phytotoxicity; accumulation and transport; silver ions; INFORMATION RESOURCE TAIR; SPRAGUE-DAWLEY RATS; CELL-WALL; OXIDE NANOPARTICLES; SURFACE-CHARGE; KNOWLEDGE GAPS; MODEL-PLANT; IN-VIVO; ROOT; TOXICITY;
D O I
10.3109/17435390.2012.658094
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The widespread availability of nano-enabled products in the global market may lead to the release of a substantial amount of engineered nanoparticles in the environment, which frequently display drastically different physiochemical properties than their bulk counterparts. The purpose of the study was to evaluate the impact of citrate-stabilised silver nanoparticles (AgNPs) on the plant Arabidopsis thaliana at three levels, physiological phytotoxicity, cellular accumulation and subcellular transport of AgNPs. The monodisperse AgNPs of three different sizes (20, 40 and 80 nm) aggregated into much larger sizes after mixing with quarter-strength Hoagland solution and became polydisperse. Immersion in AgNP suspension inhibited seedling root elongation and demonstrated a linear dose-response relationship within the tested concentration range. The phytotoxic effect of AgNPs could not be fully explained by the released silver ions. Plants exposed to AgNP suspensions bioaccumulated higher silver content than plants exposed to AgNO3 solutions (Ag+ representative), indicating AgNP uptake by plants. AgNP toxicity was size and concentration dependent. AgNPs accumulated progressively in this sequence: border cells, root cap, columella and columella initials. AgNPs were apoplastically transported in the cell wall and found aggregated at plasmodesmata. In all the three levels studied, AgNP impacts differed from equivalent dosages of AgNO3.
引用
收藏
页码:323 / 337
页数:15
相关论文
共 79 条
[1]   Diverse evolutionary paths to cell adhesion [J].
Abedin, Monika ;
King, Nicole .
TRENDS IN CELL BIOLOGY, 2010, 20 (12) :734-742
[2]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290
[3]  
AshaRani PV, 2011, NANOTOXICOL IN PRESS
[4]   Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport [J].
Asli, Sare ;
Neumann, Peter M. .
PLANT CELL AND ENVIRONMENT, 2009, 32 (05) :577-584
[5]  
Auffan M, 2010, NANOMEDICINE-UK, V5, P999, DOI [10.2217/nnm.10.61, 10.2217/NNM.10.61]
[6]   Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective [J].
Auffan, Melanie ;
Rose, Jerome ;
Bottero, Jean-Yves ;
Lowry, Gregory V. ;
Jolivet, Jean-Pierre ;
Wiesner, Mark R. .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :634-641
[7]   The Release of Nanosilver from Consumer Products Used in the Home [J].
Benn, Troy ;
Cavanagh, Bridget ;
Hristovski, Kiril ;
Posner, Jonathan D. ;
Westerhoff, Paul .
JOURNAL OF ENVIRONMENTAL QUALITY, 2010, 39 (06) :1875-1882
[8]   Nanoparticle silver released into water from commercially available sock fabrics [J].
Benn, Troy M. ;
Westerhoff, Paul .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (11) :4133-4139
[9]   Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25 % larger than the Arabidopsis genome initiative estimate of ∼125 Mb [J].
Bennett, MD ;
Leitch, IJ ;
Price, HJ ;
Johnston, JS .
ANNALS OF BOTANY, 2003, 91 (05) :547-557
[10]   Research strategies for safety evaluation of nanomaterials, Part V: Role of dissolution in biological fate and effects of nanoscale particles [J].
Borm, P ;
Klaessig, FC ;
Landry, TD ;
Moudgil, B ;
Pauluhn, J ;
Thomas, K ;
Trottier, R ;
Wood, S .
TOXICOLOGICAL SCIENCES, 2006, 90 (01) :23-32