HOPF BIFURCATION OF LIENARD SYSTEMS BY PERTURBING A NILPOTENT CENTER

被引:3
作者
Su, Jing [1 ]
Yang, Junmin [2 ]
Han, Maoan [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 08期
基金
中国国家自然科学基金;
关键词
Hopf bifurcation; Lienard system; nilpotent center; Melnikov function; NEAR-HAMILTONIAN SYSTEMS; LIMIT-CYCLES;
D O I
10.1142/S0218127412502033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As we know, Lienard system is an important model of nonlinear oscillators, which has been widely studied. In this paper, we study the Hopf bifurcation of an analytic Lienard system by perturbing a nilpotent center. We develop an efficient method to compute the coefficients b(l) appearing in the expansion of the first order Melnikov function by finding a set of equivalent quantities B2l+1 which are able to calculate directly and can be used to study the number of small-amplitude limit cycles of the system. As an application, we investigate some polynomial Lienard systems, obtaining a lower bound of the maximal number of limit cycles near a nilpotent center.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
Arnold V.I., 1983, Geometrical methods in the theory of ordinary differential equations, DOI DOI 10.1007/978-1-4684-0147-9
[2]  
Arnold VI, 1977, Funct Anal Appl, V11, P85, DOI [10.1007/BF01081886, DOI 10.1007/BF01081886]
[3]   On the cyclicity of weight-homogeneous centers [J].
Gavrilov, Lubomir ;
Gine, Jaume ;
Grau, Maite .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) :3126-3135
[4]  
Han M., 1999, Ann. Differ. Equat, V15, P113
[5]   On Hopf cyclicity of planar systems [J].
Han, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) :404-422
[6]   Polynomial Hamiltonian systems with a nilpotent critical point [J].
Han, Maoan ;
Shu, Chenggang ;
Yang, Junmin ;
Chian, Abraham C. -L. .
ADVANCES IN SPACE RESEARCH, 2010, 46 (04) :521-525
[7]   LIMIT CYCLE BIFURCATIONS IN NEAR-HAMILTONIAN SYSTEMS BY PERTURBING A NILPOTENT CENTER [J].
Han, Maoan ;
Jiang, Jiao ;
Zhu, Huaiping .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (10) :3013-3027
[8]   HOPF BIFURCATIONS FOR NEAR-HAMILTONIAN SYSTEMS [J].
Han, Maoan ;
Yang, Junmin ;
Yu, Pei .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12) :4117-4130
[9]   Melnikov function and limit cycle bifurcation from a nilpotent center [J].
Jiang, Jiao ;
Han, Maoan .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (03) :182-193
[10]   Bifurcation of limit cycles for a quartic near-Hamiltonian system by perturbing a nilpotent center [J].
Jiang, Jiao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) :376-384