Four-Wave-Mixing Suppression of Master-to-Slave Injection-Locked Two-Wavelength FPLD Pair for MMW-PON

被引:20
作者
Chen, Hsiang-Yu [1 ,2 ]
Chi, Yu-Chieh [1 ,2 ]
Lin, Chung-Yu [1 ,2 ]
Tsai, Cheng-Ting [1 ,2 ]
Lin, Gong-Ru [1 ,2 ]
机构
[1] Natl Taiwan Univ, Grad Inst Photon & Optoelect, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
关键词
Dense wavelength division multiplexed passive optical network (DWDM-PON); Fabry-Perot laser diode; injection-locking; millimeter wave; two-wavelength; ROF-PON; GENERATION; SYSTEM; WIRELESS; SIGNALS;
D O I
10.1109/JLT.2016.2549061
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The four-wave-mixing (FWM) suppression of a master-to-slave injection-locked two-wavelength Fabry-Perot laser diode (FPLD) pair is investigated from the viewpoint of integrating fiber-optic wired and millimeter-wave (MMW) wireless networks for mobile and satellite communications. This is achieved by shifting the FWM side modes away from the cavity mode to avoid FWM enhancement induced by cavity resonance. Mode-deviated two-wavelength injection from a 900-mu m master FPLD to a 600-mu m slave FPLD successfully suppresses the resonant FWM side modes to-31 and -35 dBm, which enables the transmission of 18-Gb/s 64-quadrature amplitude modulation orthogonal frequency-division multiplexing (QAM OFDM) data with error vector magnitude (EVM), signal-to-noise ratio (SNR), and bit error rate (BER) values of 6.3%, 24 dB, and 1.6 x 10(-4), respectively. The FWM-suppressed 600-mu m slave shows lower chromatic dispersion than that of the 750-mu m slave. In addition, a 47-GHz MMW carrier remotely beat by the two-wavelength-injected slave enables the transmission of passband 2-Gb/s 4-QAM OFDM data with EVM, SNR, and BER values of 36.3%, 8.8 dB, and 2.9 x 10(-3), respectively, after 25-km single-mode fiber wired and 1.6-m free-space wireless transmission.
引用
收藏
页码:4810 / 4818
页数:9
相关论文
共 23 条
[1]  
Agrawal G. P., 2019, Nonlinear Fiber Optics, V6th
[2]  
[Anonymous], 2010, SATELLITE TECHNOLOGY
[3]  
[Anonymous], IEEE J SEL TOP QUANT
[4]   WDM-RoF-PON Architecture for Flexible Wireless and Wire-Line Layout [J].
Cao, Zizheng ;
Yu, Jianjun ;
Zhou, Hui ;
Wang, Wenpei ;
Xia, Minmin ;
Wang, Jing ;
Tang, Qi ;
Chen, Lin .
JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2010, 2 (02) :117-121
[5]  
Coldren L. A., 1995, DIODE LASERS PHOTONI
[6]   THEORY OF THE LINEWIDTH OF SEMICONDUCTOR-LASERS [J].
HENRY, CH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1982, 18 (02) :259-264
[7]   CW 3-WAVE MIXING IN SINGLE-MODE OPTICAL FIBERS [J].
HILL, KO ;
JOHNSON, DC ;
KAWASAKI, BS ;
MACDONALD, RI .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (10) :5098-5106
[8]   Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection [J].
Hurtado, A. ;
Henning, I. D. ;
Adams, M. J. ;
Lester, L. F. .
APPLIED PHYSICS LETTERS, 2013, 102 (20)
[9]   Generation of Tunable Millimeter-Wave and THz Signals With an Optically Injected Quantum Dot Distributed Feedback Laser [J].
Hurtado, Antonio ;
Henning, Ian D. ;
Adams, Michael J. ;
Lester, Luke F. .
IEEE PHOTONICS JOURNAL, 2013, 5 (04)
[10]   CROSSTALK AND POWER PENALTY DUE TO FIBER 4-WAVE-MIXING IN MULTICHANNEL TRANSMISSIONS [J].
INOUE, K ;
NAKANISHI, K ;
ODA, K ;
TOBA, H .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1994, 12 (08) :1423-1439