Obstacle Detection for Low Flying UAS Using Monocular Camera

被引:0
作者
Zhang, F. [1 ]
Goubran, R. [2 ]
Straznicky, P. [3 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[2] Carleton Univ, Fac Engn & Design, Ottawa, ON K1S 5B6, Canada
[3] Carleton Univ, Dept Mech & Aerosp Engn, Ottawa, ON K1S 5B6, Canada
来源
2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) | 2012年
基金
加拿大自然科学与工程研究理事会;
关键词
Obstacle Detection; Range Estimate; UAS; Motion Stereo;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes an obstacle detection algorithm for low flying unmanned aircraft system (UAS) using an inertial aided inverse depth Extended Kalman Filter (EKF) framework. The EKF framework fuses inertial measurements with monocular image sensor measurements to estimate the positions of a number of landmarks as well as the position and orientation of the UAS. A high resolution sparse terrain elevation map and UAS trajectory can then be computed from the filter state vector. An inverse depth parameterization is used to describe the position of the landmarks so that features at all ranges can be tracked by the filter. A test flight was conducted to test the algorithm in a realistic scenario. The result shows that the algorithm produces accurate terrain elevation model, and is capable of generating accurate high resolution terrain elevation map when image sensor with high resolution and dynamic range is used.
引用
收藏
页码:2133 / 2137
页数:5
相关论文
共 10 条
[1]  
Amzajerdian F., 2011, P INT S PHOT DET IM, P24
[2]  
Bouguet J.Y., 2003, Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm
[3]   Inverse Depth Parametrization for Monocular SLAM [J].
Civera, Javier ;
Davison, Andrew J. ;
Montiel, J. M. Martinez .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (05) :932-945
[4]   1-Point RANSAC for Extended Kalman Filtering: Application to Real-Time Structure from Motion and Visual Odometry [J].
Civera, Javier ;
Grasa, Oscar G. ;
Davison, Andrew J. ;
Montiel, J. M. M. .
JOURNAL OF FIELD ROBOTICS, 2010, 27 (05) :609-631
[5]  
HANNA E, 2008, P IEEE INT INSTR MEA, P113
[6]   Neural Networks for Environmental Recognition and Navigation of a Mobile Robot [J].
Harb, Mottfid ;
Abielmona, Rami ;
Naji, Kamal ;
Petriu, Emil .
2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, :1123-+
[7]  
Ming-Chih Lu, 2010, 2010 IEEE International Instrumentation & Measurement Technology Conference - I2MTC 2010, P318, DOI 10.1109/IMTC.2010.5488218
[8]  
OpenCV dev team, OPENCV V2 3 DOC
[9]   Robust High-Accuracy Ultrasonic Range Measurement System [J].
Saad, M. M. ;
Bleakley, Chris J. ;
Dobson, Simon .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2011, 60 (10) :3334-3341
[10]  
SHI JB, 1994, 1994 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, P593, DOI 10.1109/CVPR.1994.323794