Capable Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field

被引:14
作者
Niroomand, Peyman [1 ]
Johari, Farangis [2 ]
Parvizi, Mohsen [2 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
[2] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad, Iran
关键词
Capability; Schur multiplier; generalized Heisenberg Lie algebras; stem Lie algebras; SCHUR MULTIPLIER; CLASSIFICATION; CAPABILITY; COVERS;
D O I
10.1080/03081087.2018.1425356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classify all capable nilpotent Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field. Moreover, the explicit structure of such Lie algebras of class 3 is given.
引用
收藏
页码:542 / 554
页数:13
相关论文
共 20 条
[1]   On covers of Lie algebras [J].
Batten, P ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4301-4317
[2]   On characterizing nilpotent Lie algebras by their multipliers [J].
Batten, P ;
Moneyhun, K ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4319-4330
[3]   GROUPS OCCURRING AS CENTER FACTOR GROUPS [J].
BEYL, FR ;
FELGNER, U ;
SCHMID, P .
JOURNAL OF ALGEBRA, 1979, 61 (01) :161-177
[4]   ON SCHUR MULTIPLIERS OF LIE ALGEBRAS AND GROUPS OF MAXIMAL CLASS [J].
Bosko, Lindsey R. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2010, 20 (06) :807-821
[5]   Six-dimensional nilpotent Lie algebras [J].
Cicalo, Serena ;
de Graaf, Willem A. ;
Schneider, Csaba .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) :163-189
[6]   Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2 [J].
de Graaf, Willem A. .
JOURNAL OF ALGEBRA, 2007, 309 (02) :640-653
[7]   A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS [J].
ELLIS, GJ .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :101-120
[8]  
Gong M.-P., 1998, THESIS
[9]  
Hall P, 1940, J REINE ANGEW MATH, V182, P130
[10]   On characterizing nilpotent lie algebras by their multipliers, t(L) = 3,4,5,6 [J].
Hardy, P ;
Stitzinger, E .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (11) :3527-3539