Convergence Analysis of Self-Adaptive Inertial Extra-Gradient Method for Solving a Family of Pseudomonotone Equilibrium Problems with Application

被引:6
作者
Bantaojai, Thanatporn [1 ]
Pakkaranang, Nuttapol [2 ]
Ur Rehman, Habib [2 ]
Kumam, Poom [2 ,3 ,4 ]
Kumam, Wiyada [5 ]
机构
[1] Valaya Alongkorn Rajabhat Univ, Fac Educ, Math English Program, Pathum Thani 13180, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, KMUTT Fixed Point Theory & Applicat Res Grp, KMUTT Fixed Point Res Lab, SCL 802 Fixed Point Lab,Dept Math,Fac Sci, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Rajamangala Univ Technol Thanyaburi, Fac Sci & Technol, Dept Math & Comp Sci, Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 08期
关键词
pseudomonotone bifunction; convex optimization; equilibrium problems; variational inequality problems; weak convergence; SUBGRADIENT EXTRAGRADIENT METHOD; FIXED-POINTS; ALGORITHMS; INEQUALITIES; MAPPINGS;
D O I
10.3390/sym12081332
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we propose a new modified extragradient-like method to solve pseudomonotone equilibrium problems in real Hilbert space with a Lipschitz-type condition on a bifunction. This method uses a variable stepsize formula that is updated at each iteration based on the previous iterations. The advantage of the method is that it operates without prior knowledge of Lipschitz-type constants and any line search method. The weak convergence of the method is established by taking mild conditions on a bifunction. In the context of an application, fixed-point theorems involving strict pseudo-contraction and results for pseudomonotone variational inequalities are considered. Many numerical results have been reported to explain the numerical behavior of the proposed method.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 48 条
[1]  
ABUBAKAR J, 2020, MATHEMATICS-BASEL, V8, DOI DOI 10.3390/MATH8040609
[2]  
Abubakar J., 2019, THAI J MATH, V18
[3]   On ergodic algorithms for equilibrium problems [J].
Anh, P. N. ;
Hai, T. N. ;
Tuan, P. M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) :179-195
[4]  
[Anonymous], 1991, Introductory functional analysis with applications
[5]  
[Anonymous], 2007, EQUILIBRIUM MODELS V
[6]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[7]  
Blum E., 1994, MATH STUDENT, V63, P123
[8]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[9]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[10]   Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION, 2012, 61 (09) :1119-1132