Solid-state synthesis of uniform Li2MnSiO4/C/graphene composites and their performance in lithium-ion batteries

被引:40
作者
Gong, Huaxu [1 ]
Zhu, Yongchun [1 ]
Wang, Linlin [1 ]
Wei, Denghu [1 ]
Liang, Jianwen [1 ]
Qian, Yitai [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
关键词
Composites; Nanospheres; Carbon network; Electrochemical properties; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; MANGANESE SILICATE; CATHODE MATERIAL; LI2MSIO4; M; LI2MNSIO4; CARBON; MN; FE; NANOCOMPOSITE;
D O I
10.1016/j.jpowsour.2013.07.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Uniform nanospherical Li2MnSiO4/C/graphene composites have been obtained by polyethylene glycol-600 (PEG-600) assisted solid-state reaction using spherical SiO2 as precursor, and heat treatment with the mixed carbon sources (glucose, cellulose acetate and graphene oxide). The transmission electron microscope (TEM) images show that Li2MnSiO4 nanospheres with size of 50 nm are embedded in the three-dimensional (3D) nest-like carbon network. Electrochemical measurements reveal that the composites exhibit first discharge capacity of 215.3 mAh g(-1) under 0.05 C, together with a stable discharge capacity of 175 mAh g(-1) after 40 cycles. The 3D carbon network and the carbon layer (amorphous carbon and graphene) are favorable for improving the electrochemical performance. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 197
页数:6
相关论文
共 30 条
[1]   Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material [J].
Aono, Shintaro ;
Tsurudo, Taisuke ;
Urita, Koki ;
Moriguchi, Isamu .
CHEMICAL COMMUNICATIONS, 2013, 49 (28) :2939-2941
[2]   Superior Lithium Storage Properties of Carbon Coated Li2MnSiO4 Cathodes [J].
Aravindan, V. ;
Karthikeyan, K. ;
Amaresh, S. ;
Lee, Y. S. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (04) :A33-A35
[3]   A novel approach to employ Li2MnSiO4 as anode active material for lithium batteries [J].
Aravindan, V. ;
Karthikeyan, K. ;
Amaresh, S. ;
Kim, H. S. ;
Chang, D. R. ;
Lee, Y. S. .
IONICS, 2011, 17 (01) :3-6
[4]   Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes [J].
Aravindan, V. ;
Karthikeyan, K. ;
Kang, K. S. ;
Yoon, W. S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (08) :2470-2475
[5]   Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties [J].
Aravindan, V. ;
Karthikeyan, K. ;
Ravi, S. ;
Amaresh, S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7340-7343
[6]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[7]   On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J].
Arroyo-deDompablo, M. E. ;
Dominko, R. ;
Gallardo-Amores, J. M. ;
Dupont, L. ;
Mali, G. ;
Ehrenberg, H. ;
Jamnik, J. ;
Moran, E. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5574-5584
[8]   Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material [J].
Belharouak, Ilias ;
Abouimrane, A. ;
Amine, K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20733-20737
[9]   Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications [J].
Devaraju, Murukanahally Kempaiah ;
Tomai, Takaaki ;
Unemoto, Atsushi ;
Honma, Itaru .
RSC ADVANCES, 2013, 3 (02) :608-615
[10]   Li2MSiO4 (M = Fe and/or Mn) cathode materials [J].
Dominko, R. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :462-468