Natural bicubic spline fractal interpolation

被引:39
|
作者
Chand, A. K. B. [1 ]
Navascues, M. A. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Ctr Politecn Super Ingn, Zaragoza 50018, Spain
关键词
Fractals; Iterated function systems; Fractal interpolation functions; Cardinal splines; Blending function; Surface approximation;
D O I
10.1016/j.na.2007.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal Interpolation functions provide natural deterministic approximation of complex phenomena. Cardinal cubic splines are developed through moments (i.e. second derivative of the original function at mesh points). Using tensor product, bicubic spline fractal interpolants are constructed that successfully generalize classical natural bicubic splines. An upper bound of the difference between the natural cubic spline blended fractal interpolant and the original function is deduced. In addition, the convergence of natural bicubic fractal interpolation functions towards the original function providing the data is studied. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3679 / 3691
页数:13
相关论文
共 50 条
  • [1] NATURAL CUBIC AND BICUBIC SPLINE INTERPOLATION
    HALL, CA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (06) : 1055 - 1060
  • [2] BICUBIC SPLINE INTERPOLATION
    BOOR, CD
    JOURNAL OF MATHEMATICS AND PHYSICS, 1962, 41 (03): : 212 - &
  • [3] Speedup of Bicubic Spline Interpolation
    Kacala, Viliam
    Torok, Csaba
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 806 - 818
  • [4] DYNAMIC PROGRAMMING AND BICUBIC SPLINE INTERPOLATION
    BELLMAN, R
    KASHEF, B
    VASUDEVA.R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (01) : 160 - 174
  • [5] ERROR BOUNDS FOR BICUBIC SPLINE INTERPOLATION
    CARLSON, RE
    HALL, CA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 235 - &
  • [6] Spline and fractal spline interpolation
    Somogyi, Ildiko
    Soos, Anna
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (02): : 193 - 199
  • [7] Explicit formulas for bicubic spline surface interpolation
    Ma, LZ
    Peng, QS
    Feng, JQ
    FOURTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, 1996, 2644 : 181 - 190
  • [8] BICUBIC SPLINE INTERPOLATION OF UNEQUALLY SPACED DATA
    CHRISTIE, MA
    MORIARTY, KJM
    COMPUTER PHYSICS COMMUNICATIONS, 1979, 17 (04) : 357 - 364
  • [9] CURVILINEAR BICUBIC SPLINE FIT INTERPOLATION SCHEME
    CHI, C
    OPTICA ACTA, 1973, 20 (12): : 979 - 993
  • [10] BICUBIC SPLINE INTERPOLATION - QUANTITATIVE TEST OF ACCURACY AND EFFICIENCY
    RASMUSSEN, KL
    SHARMA, PV
    GEOPHYSICAL PROSPECTING, 1979, 27 (02) : 394 - 408