Time periodic solution of the viscous Camassa-Holm equation

被引:18
作者
Fu, YP [1 ]
Guo, BL
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Camassa-Holm equation; time periodic solution; Galerkin method; Leray-Schauder fixed point theorem;
D O I
10.1016/j.jmaa.2005.08.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the viscous Camassa-Holm equation with a periodic boundary condition. The existence and uniqueness of a time periodic solution are investigated by using the Galerkin method and Leray-Schauder fixed point theorem. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 321
页数:11
相关论文
共 16 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[4]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[5]  
2-5
[6]   Global weak solutions for a shallow water equation [J].
Constantin, A ;
Molinet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :45-61
[7]   On the blow-up of solutions of a periodic shallow water equation [J].
Constantin, A .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (03) :391-399
[8]   SOLITONS IN THE CAMASSA-HOLM SHALLOW-WATER EQUATION [J].
COOPER, F ;
SHEPARD, H .
PHYSICS LETTERS A, 1994, 194 (04) :246-250
[9]  
Evans L.C, 1998, GRADUATE STUDIES MAT, V18
[10]  
FOIAS C, 2001, J DYN DIFFER EQU, V14, P1