Ultralow-threshold continuous-wave lasing assisted by a metallic optofluidic cavity exploiting continuous pump

被引:11
作者
Dai, Hailang [1 ,2 ]
Jiang, Bei [1 ,2 ]
Yin, Cheng [1 ,3 ]
Cao, Zhuangqi [1 ]
Chen, Xianfeng [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Fiber Opt Local Area Commun Network, Dept Phys & Astron, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, CICIFSA, Shanghai 200240, Peoples R China
[3] Hohai Univ, Jiangsu Key Lab Power Transmiss & Distribut Equip, Changzhou 213022, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MICROCAVITY LASERS; GUIDE;
D O I
10.1364/OL.43.000847
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report an ultralow-threshold continuous-wave lasing via a metallic optofluidic resonant cavity based on the symmetrical metal-cladding waveguide. The high quality factor Q and spontaneous emission coupling factor beta of the waveguide strengthen the interaction between the gain medium and the ultrahigh order modes (UOMs); hence, the room-temperature, narrowband lasing can be effectively pumped by a continuous laser of low intensity. Rhodamine 6G and methylene blue are chosen to verify the applicability of the proposed concept. Lasing is emitted from the chip surface when the pumped laser is well coupled into the UOMs. For methylene blue with a concentration of 2.57 * 10(-13) mol/ml, the operated emission can be observed with the launched pump threshold as low as 2.1 mu W/cm(2). (C) 2018 Optical Society of America
引用
收藏
页码:847 / 850
页数:4
相关论文
共 22 条
[1]   Energy transfer across a metal film mediated by surface plasmon polaritons [J].
Andrew, P ;
Barnes, WL .
SCIENCE, 2004, 306 (5698) :1002-1005
[2]   Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities [J].
Bajoni, Daniele ;
Senellart, Pascale ;
Wertz, Esther ;
Sagnes, Isabelle ;
Miard, Audrey ;
Lemaitre, Aristide ;
Bloch, Jacqueline .
PHYSICAL REVIEW LETTERS, 2008, 100 (04)
[3]   Quantum rabi oscillation: A direct test of field quantization in a cavity [J].
Brune, M ;
Schmidt-Kaler, F ;
Maali, A ;
Dreyer, J ;
Hagley, E ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1800-1803
[4]  
Dang C, 2012, NAT NANOTECHNOL, V7, P335, DOI [10.1038/nnano.2012.61, 10.1038/NNANO.2012.61]
[5]  
Ellis B, 2011, NAT PHOTONICS, V5, P297, DOI [10.1038/nphoton.2011.51, 10.1038/NPHOTON.2011.51]
[6]   Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2 [J].
Fryett, Taylor K. ;
Seyler, Kyle L. ;
Zheng, Jiajiu ;
Liu, Chang-Hua ;
Xu, Xiaodong ;
Majumdar, Arka .
2D MATERIALS, 2017, 4 (01)
[7]   Subwavelength semiconductor lasers for dense chip-scale integration [J].
Gu, Qing ;
Smalley, Joseph S. T. ;
Nezhad, Maziar P. ;
Simic, Aleksandar ;
Lee, Jin Hyoung ;
Katz, Michael ;
Bondarenko, Olesya ;
Slutsky, Boris ;
Mizrahi, Amit ;
Lomakin, Vitaliy ;
Fainman, Yeshaiahu .
ADVANCES IN OPTICS AND PHOTONICS, 2014, 6 (01) :1-56
[8]   Whispering gallery microcavity lasers [J].
He, Lina ;
Oezdemir, Sahin Kaya ;
Yang, Lan .
LASER & PHOTONICS REVIEWS, 2013, 7 (01) :60-82
[9]   Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design [J].
Karnutsch, C. ;
Pflumm, C. ;
Heliotis, G. ;
deMello, J. C. ;
Bradley, D. D. C. ;
Wang, J. ;
Weimann, T. ;
Haug, V. ;
Gaertner, C. ;
Lemmer, U. .
APPLIED PHYSICS LETTERS, 2007, 90 (13)
[10]   Optofluidic Lasers with Aqueous Quantum Dots [J].
Kiraz, Alper ;
Chen, Qiushu ;
Fan, Xudong .
ACS PHOTONICS, 2015, 2 (06) :707-713