Simultaneous Synchrotron WAXD and Fast Scanning (Chip) Calorimetry: On the (Isothermal) Crystallization of HDPE and PA11 at High Supercoolings and Cooling Rates up to 200 °C s-1

被引:36
作者
Baeten, Dorien [1 ]
Mathot, Vincent B. F. [1 ]
Pijpers, Thijs F. J. [1 ]
Verkinderen, Olivier [1 ]
Portale, Giuseppe [2 ]
Van Puyvelde, Peter [3 ]
Goderis, Bart [1 ]
机构
[1] Katholieke Univ Leuven, Polymer Chem & Mat, B-3001 Leuven, Belgium
[2] Netherlands Org Sci Res, DUBBLE CRG ESRF BM26, F-38043 Grenoble, France
[3] Katholieke Univ Leuven, Soft Matter Rheol & Technol, B-3001 Leuven, Belgium
关键词
crystallization; fast scanning (chip) calorimetry; morphology; polymers; synchrotron wide angle X-ray diffraction; X-RAY-DIFFRACTION; FLASH DSC 1; POLYMER CRYSTALLIZATION; TEMPERATURE-DEPENDENCE; PERFORMANCE; CALIBRATION; MORPHOLOGY; SCATTERING;
D O I
10.1002/marc.201500081
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 degrees C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time.
引用
收藏
页码:1184 / 1191
页数:8
相关论文
共 33 条
[1]   Scanning microcalorimetry at high cooling rate [J].
Adamovsky, SA ;
Minakov, AA ;
Schick, C .
THERMOCHIMICA ACTA, 2003, 403 (01) :55-63
[2]   1,000,000-DEGREES-C/S THIN-FILM ELECTRICAL HEATER - IN-SITU RESISTIVITY MEASUREMENTS OF AL AND TI/SI THIN-FILMS DURING ULTRA-RAPID THERMAL ANNEALING [J].
ALLEN, LH ;
RAMANATH, G ;
LAI, SL ;
MA, Z ;
LEE, S ;
ALLMAN, DDJ ;
FUCHS, KP .
APPLIED PHYSICS LETTERS, 1994, 64 (04) :417-419
[3]   Rapidly cooled polyethylenes: On the thermal stability of the semicrystalline morphology [J].
Basiura, M. ;
Gearba, R. I. ;
Ivanov, D. A. ;
Janicki, J. ;
Reynaers, H. ;
Groeninckx, G. ;
Bras, W. ;
Goderis, B. .
MACROMOLECULES, 2006, 39 (24) :8399-8411
[4]   Hard X-ray techniques suitable for polymer experiments [J].
Bras, W. ;
Goossens, H. ;
Goderis, B. .
SYNCHROTRON RADIATION IN POLYMER SCIENCE (SRPS 4), 2010, 14
[5]  
Cagran C, 2008, HBK THERMAL ANAL CAL, V5, P299
[6]  
Danley RL, 2008, AM LAB, V40, P9
[7]   THERMAL EXPANSION OF POLYETHYLENE UNIT CELL - EFFECT OF LAMELLA THICKNESS [J].
DAVIS, GT ;
EBY, RK ;
COLSON, JP .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (11) :4316-&
[8]   Structural and thermal transitions during the conversion from native to granular cold-water swelling maize starch [J].
Dries, D. M. ;
Gomand, S. V. ;
Goderis, B. ;
Delcour, J. A. .
CARBOHYDRATE POLYMERS, 2014, 114 :196-205
[9]   Thin-film differential scanning nanocalorimetry: heat capacity analysis [J].
Efremov, MY ;
Olson, EA ;
Zhang, M ;
Lai, SL ;
Schiettekatte, F ;
Zhang, ZS ;
Allen, LH .
THERMOCHIMICA ACTA, 2004, 412 (1-2) :13-23
[10]  
Goderis B, 2000, J POLYM SCI POL PHYS, V38, P1975, DOI 10.1002/1099-0488(20000801)38:15<1975::AID-POLB30>3.0.CO