Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of 4-Chlorophenol

被引:1038
作者
Xu, Lejin [1 ]
Wang, Jianlong [1 ,2 ]
机构
[1] Tsinghua Univ, Lab Environm Technol, INET, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCATALYTIC DEGRADATION; FERROUS ION; IRON-OXIDE; X-RAY; OXIDATION; FE; ADSORPTION; CEO2-TIO2; MECHANISM; TEMPERATURE;
D O I
10.1021/es300303f
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Magnetic nanoscaled Fe3O4/CeO2 composite was prepared by the impregnation method and characterized as a heterogeneous Fenton-like catalyst for 4-chlorophenol (4-CP) degradation. The catalytic activity was evaluated in view of the effects of various processes, pH value, catalyst addition, hydrogen peroxide (H2O2) concentration, and temperature, and the pseudo-first-order kinetic constant of 0.11 min(-1) was obtained for 4-CP degradation at 30 degrees C and pH 3.0 with 30 mM H2O2, 2.0 g L-1 Fe3O4/CeO2, and 0.78 mM 4-CP. The high utilization efficiency of H2O2, calculated as 79.2%, showed a promising application of the catalyst in the oxidative degradation of organic pollutants. The reusability of Fe3O4/CeO2 composite was also investigated after six successive runs. On the basis of the results of metal leaching, the effects of radical scavengers, intermediates determination, and X-ray photoelectron spectroscopic (XPS) analysis, the dissolution of Fe3O4 facilitated by CeO2 played a significant role, and 4-CP was decomposed mainly by the attack of hydroxyl radicals (center dot OH), including surface-bound center dot OHads generated by the reaction of Fe2+ and Ce3+ species with H2O2 on the catalyst surface, and center dot OHfree in the bulk solution mainly attributed to the leaching of Fe.
引用
收藏
页码:10145 / 10153
页数:9
相关论文
共 52 条
[1]   SATELLITE STRUCTURE IN X-RAY PHOTOELECTRON-SPECTRA OF SOME BINARY AND MIXED OXIDES OF LANTHANUM AND CERIUM [J].
BURROUGHS, P ;
HAMNETT, A ;
ORCHARD, AF ;
THORNTON, G .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1976, (17) :1686-1698
[2]   Chemistry - Oxygen vacancies and catalysis on ceria surfaces [J].
Campbell, CT ;
Peden, CHF .
SCIENCE, 2005, 309 (5735) :713-714
[3]   Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides [J].
Costa, Regina C. C. ;
Moura, Flavia C. C. ;
Ardisson, J. D. ;
Fabris, J. D. ;
Lago, R. M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 83 (1-2) :131-139
[4]   FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II [J].
Deng, Jingheng ;
Jiang, Jingyuan ;
Zhang, Yuanyuan ;
Lin, Xiaoping ;
Du, Changming ;
Xiong, Ya .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 84 (3-4) :468-473
[5]   Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels [J].
Duarte, Filipa ;
Maldonado-Hodar, F. J. ;
Perez-Cadenas, A. F. ;
Madeira, Luis M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 85 (3-4) :139-147
[6]   Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis [J].
Dukkanci, M. ;
Gunduz, G. ;
Yilmaz, S. ;
Prihod'ko, R. V. .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 181 (1-3) :343-350
[7]   Electron localization determines defect formation on ceria substrates [J].
Esch, F ;
Fabris, S ;
Zhou, L ;
Montini, T ;
Africh, C ;
Fornasiero, P ;
Comelli, G ;
Rosei, R .
SCIENCE, 2005, 309 (5735) :752-755
[8]   Discoloration and mineralization of orange II using different heterogeneous catalysts containing Fe: A comparative study [J].
Feng, JY ;
Hu, XJ ;
Yue, PL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (21) :5773-5778
[9]   Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J].
Gao, Lizeng ;
Zhuang, Jie ;
Nie, Leng ;
Zhang, Jinbin ;
Zhang, Yu ;
Gu, Ning ;
Wang, Taihong ;
Feng, Jing ;
Yang, Dongling ;
Perrett, Sarah ;
Yan, Xiyun .
NATURE NANOTECHNOLOGY, 2007, 2 (09) :577-583
[10]   Superparamagnetic magnetite colloidal nanocrystal clusters [J].
Ge, Jianping ;
Hu, Yongxing ;
Biasini, Maurizio ;
Beyermann, Ward P. ;
Yin, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (23) :4342-4345