Construction of an aircraft stabilizing control using the Lyapunov function

被引:0
|
作者
Bugrov, DI
机构
来源
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS | 1996年 / 60卷 / 05期
关键词
D O I
10.1016/S0021-8928(96)00090-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complete non-linear equations of motion of an aircraft, treated as an absolutely rigid body, are considered. The control parameters are the engine thrust and the angles of deviation of the rudders. The problem of stabilizing a programmed regime of the aircraft motion is formulated. The regime is described by specifying the variation with time of the velocity vectors of the mass centre and the angular velocity. The so-called ''kinetic energy of the deviations'' is taken as a Lyapunov function, and a stabilizing control is written explicitly. It is proved that the control ensures asymptotic stability of ''practically'' any programmed regime of motion. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:713 / 716
页数:4
相关论文
共 50 条
  • [41] Construction of a global Lyapunov function using radial basis functions with a single operator
    Giesl, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (01): : 101 - 124
  • [42] Inverse optimal control and construction of control Lyapunov functions
    Shahmansoorian A.
    Journal of Mathematical Sciences, 2009, 161 (2) : 297 - 307
  • [43] Dynamic Matrix Control Used in Stabilizing Aircraft Landing
    Calugaru, George
    Danisor, Elena-Andreea
    2016 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL ELECTRICITY (ICATE), 2016,
  • [44] Analytical Investigation of the Stabilizing Function of the Musculoskeletal System using Lyapunov Stability Criteria and its Robotic Applications
    Chang, Handdcut
    Kim, Sangjoon J.
    Kim, Jung
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 5391 - 5398
  • [45] A Lyapunov Function Based Nonlinear Controller Design for PVTOL Aircraft
    Subasi, Evren
    Turker, Turker
    2018 23RD INTERNATIONAL CONFERENCE ON METHODS & MODELS IN AUTOMATION & ROBOTICS (MMAR), 2018, : 668 - 673
  • [46] Lyapunov Function-Based Stabilizing Control Scheme for Wireless Power Transfer Systems with LCC Compensation Network
    Hasan, Abu Shahir Md Khalid
    Bhogaraju, Indra
    Farasat, Mehdi
    Malisoff, Michael
    2021 THIRTY-SIXTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2021), 2021, : 694 - 699
  • [47] Numerical Construction of Nonsmooth Control Lyapunov Functions
    Baier, Robert
    Braun, Philipp
    Gruene, Lars
    Kellett, Christopher M.
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 343 - 373
  • [48] Modified sliding mode control using a target derivative of the Lyapunov function
    Lee, SH
    Min, KW
    Lee, YC
    ENGINEERING STRUCTURES, 2005, 27 (01) : 49 - 59
  • [49] Control of Uncertain System Represented by Polytope Using Enhaced Lyapunov Function
    Marques, Mairon F.
    Magan, Murillo V.
    Gaino, Ruberlei
    Covacic, Marcio R.
    2017 CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON), 2017,
  • [50] New control strategy for interleaved PFC rectifiers using Lyapunov function
    Kim, Ill-Uk
    Bae, Byung-Kwan
    Choi, Jong-Woo
    JOURNAL OF POWER ELECTRONICS, 2021, 21 (02) : 464 - 474