Global stability and Neimark-Sacker bifurcation of a host-parasitoid model

被引:35
作者
Din, Qamar [1 ]
机构
[1] Univ Poonch Rawalakot, Dept Math, Rawalakot, Pakistan
关键词
Host-parasitoid model; steady states; boundedness; local and global stability; Neimark-Sacker bifurcation; PREDATOR-PREY SYSTEM; CHAOS; BEHAVIOR;
D O I
10.1080/00207721.2016.1244308
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate qualitative behaviour of a density-dependent discrete-time host-parasitoid model. Particularly, we study boundedness of solutions, existence and uniqueness of positive steady-state, local and global asymptotic stability of the unique positive equilibrium point and rate of convergence of modified host-parasitoid model. Moreover, it is also proved that the system undergoes Neimark-Sacker bifurcation with the help of bifurcation theory. Finally, numerical simulations are provided to illustrate theoretical results. These results of numerical simulations demonstrate chaotic long-term behaviour over a broad range of parameters. The computation of the maximum Lyapunov exponents confirm the presence of chaotic behaviour in the model.
引用
收藏
页码:1194 / 1202
页数:9
相关论文
共 23 条
[1]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[2]  
Allen L., 2007, An Introduction to Mathematical Biology
[3]  
[Anonymous], 2013, Mathematical Biology
[4]  
[Anonymous], 2013, Nonlinear Difference Equations: Theory with Applications to Social Science Models
[5]  
Brauer F., 2000, Mathematical Models in Population Biology and Epidemiology
[6]   Global stability of a population model [J].
Din, Q. .
CHAOS SOLITONS & FRACTALS, 2014, 59 :119-128
[7]   Global behavior of a host-parasitoid model under the constant refuge effect [J].
Din, Qamar .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (04) :2815-2826
[8]   Qualitative Behaviour of Generalised Beddington Model [J].
Din, Qamar ;
Khan, Muhammad Adil ;
Saeed, Umer .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02) :145-155
[9]   Global character of a host-parasite model [J].
Din, Qamar ;
Donchev, Tzanko .
CHAOS SOLITONS & FRACTALS, 2013, 54 :1-7
[10]  
Edelstein-Keshet L., 1988, Mathematical models in biology