Winding orientation optimization design of composite tubes based on quasi-static and dynamic experiments

被引:42
作者
Zhang, Zheyi [1 ,3 ]
Hou, Shujuan [1 ,2 ]
Liu, Qiming [1 ]
Han, Xu [1 ,4 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Hunan, Peoples R China
[3] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
[4] Hebei Univ Technol, Sch Mech Engn, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Crashworthiness; Composite tube; Optimization; Ply angle; Dynamic impact; ENERGY-ABSORPTION CHARACTERISTICS; DIFFERENT GEOMETRICAL SHAPES; FRP SQUARE TUBES; LOADING CONDITIONS; FIBER ORIENTATION; THICKNESS; CRASHWORTHINESS; PERFORMANCE; SIMULATION; SECTIONS;
D O I
10.1016/j.tws.2017.11.052
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Compared with traditional metal materials, composite materials can be better designed by changing layup condition or ply orientation to meet performance requirements. In this study, influences of stacking sequence and fiber orientation of glass fiber reinforced polymer (GFRP) circular tube on energy absorption performance were evaluated by axial quasi-static compression, drop weight tests and numerical simulation. Optimal ply angle and layup condition of composite tubes were obtained based on the finite element modeling and regression analysis. The optimization design result was validated by experiments. Drop weight tests results were analyzed and compared with quasi-static experimental results. Experimental and numerical results illustrate that proper increase of axial layups can improve the specific energy absorption of composite tubes.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 37 条
[1]   Quasi-static axial and lateral crushing of radial corrugated composite tubes [J].
Abdewia, Elfetorl F. ;
Sulaiman, Shamsuddeen ;
Hamouda, A. M. S. ;
Mahdi, E. .
THIN-WALLED STRUCTURES, 2008, 46 (03) :320-332
[2]  
[Anonymous], 2000, ABAQUS THEOR VERS 6
[3]   Axial splitting of composite columns with different cross sections [J].
Assaee, H. ;
Rouzegar, J. ;
Fakher, M. S. Saeedi ;
Niknejad, A. .
THIN-WALLED STRUCTURES, 2016, 99 :109-118
[4]   Axial energy absorption of CFRP truncated cones [J].
Boria, S. ;
Scattina, A. ;
Belingardi, G. .
COMPOSITE STRUCTURES, 2015, 130 :18-28
[5]   Validation of a 3D damage model for predicting the response of composite structures under crushing loads [J].
Chiu, Louis N. S. ;
Falzon, Brian G. ;
Chen, Bernard ;
Yan, Wenyi .
COMPOSITE STRUCTURES, 2016, 147 :65-73
[6]   Investigation on structure optimization of crashworthiness of fiber reinforced polymers materials [J].
Duan, Shuyong ;
Tao, Yourui ;
Han, Xu ;
Yang, Xujing ;
Hou, Shujuan ;
Hu, Zhangping .
COMPOSITES PART B-ENGINEERING, 2014, 60 :471-478
[7]   A numerical study on the quasi-static axial crush characteristics of square aluminum-composite hybrid tubes [J].
El-Hage, H ;
Mallick, PK ;
Zamani, N .
COMPOSITE STRUCTURES, 2006, 73 (04) :505-514
[8]   ENERGY-ABSORPTION OF COMPOSITE-MATERIALS [J].
FARLEY, GL .
JOURNAL OF COMPOSITE MATERIALS, 1983, 17 (03) :267-279
[9]   LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen [J].
Feraboli, Paolo ;
Wade, Bonnie ;
Deleo, Francesco ;
Rassaian, Mostafa ;
Higgins, Mark ;
Byar, Alan .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2011, 42 (11) :1809-1825
[10]   Experimental studies on fracture characterisation and energy absorption of GFRP composite box structures [J].
Ghasemnejad, H. ;
Blackman, B. R. K. ;
Hadavinia, H. ;
Sudall, B. .
COMPOSITE STRUCTURES, 2009, 88 (02) :253-261