Combined Feedforward Control and Disturbance Rejection Control Design for a Wafer Stage: A Data-Driven Approach Based on Iterative Parameter Tuning

被引:6
|
作者
Cao, Mingsheng [1 ,2 ]
Bo, Yumeng [1 ,2 ]
Gao, Huibin [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
关键词
Feedforward systems; Trajectory; Tuning; Extrapolation; Task analysis; Control design; Semiconductor device modeling; Data-driven; disturbance rejection control; feedforward control; iterative parameter tuning; wafer stage; TRACKING;
D O I
10.1109/ACCESS.2020.3028379
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a data-driven algorithm that combines the advantages of iterative feedforward tuning and disturbance rejection control to satisfy the precision requirements and ensure extrapolation capability of wafer scanning. The proposed algorithm differs from pre-existing algorithms in terms of its low requirement of system model, high extrapolation capability for non repetitive trajectory tracking tasks, and high tracking precision. The feedforward controller is tuned based on instrumental variables. It utilizes tracking errors from past iterations to eliminate reference-induced errors without requiring a system model. Meanwhile, the system inverse is approximated during iterative process, and then a disturbance rejection control based on iterative tuning is constructed to compensate for disturbance-induced errors. The proposed algorithm is applied to a wafer stage. The experimental results validate the effectiveness and superiority of the proposed algorithm.
引用
收藏
页码:181224 / 181232
页数:9
相关论文
共 50 条
  • [21] AutoDDC: Hyperparameter Tuning for Direct Data-Driven Control
    Breschi, Valentina
    Formentin, Simone
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (06): : 98 - 124
  • [22] Iterative Control Decoupling Tuning by Feedforward Compensation for Precision Motion Stage
    Zhao, Hongyang
    Li, Li
    Liu, Yang
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1812 - 1817
  • [23] Data-driven Control of the Activated Sludge Process: IMC plus Feedforward Approach
    Rojas, J. D.
    Arreta, O.
    Meneses, M.
    Vilanova, R.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2016, 11 (04) : 522 - 537
  • [24] Data-Driven Indirect Iterative Learning Control
    Chi, Ronghu
    Li, Huaying
    Lin, Na
    Huang, Biao
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1650 - 1660
  • [25] Data-Driven Progressive and Iterative Learning Control
    Chen, Cheng-Wei
    Tsao, Tsu-Chin
    IFAC PAPERSONLINE, 2017, 50 (01): : 4825 - 4830
  • [26] Constrained Iterative Feedback Tuning for Robust Control of a Wafer Stage System
    Heertjes, Marcel F.
    Van der Velden, Bart
    Oomen, Tom
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (01) : 56 - 66
  • [27] Iterative tuning of modified uncertainty and disturbance estimator for time-delay processes: A data-driven approach
    Zhang, Yi
    Sun, Li
    Shen, Jiong
    Lee, Kwang Y.
    Zhong, Qing-Chang
    ISA TRANSACTIONS, 2019, 84 : 164 - 177
  • [28] Active disturbance rejection motion control of spherical robot with parameter tuning
    Liu, Manlu
    Lin, Rui
    Yang, Maotao
    Nazarova, Anaid, V
    Huo, Jianwen
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2022, 49 (02): : 332 - 343
  • [29] Data-driven Iterative Tuning for Rejecting Spatial Periodic Disturbances Combined
    Huo, Xin
    Wu, Aijing
    Wang, Ruichao
    Ma, Kemao
    IFAC PAPERSONLINE, 2020, 53 (02): : 3959 - 3964
  • [30] Optimised data-driven terminal iterative learning control based on neural network for distributed parameter systems
    Dai, Xisheng
    Liu, Lanlan
    Deng, Zhenping
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2021, 15 (4-5) : 463 - 481