Upper bounds for exponential moments of hitting times for semi-Markov processes

被引:2
|
作者
Silvestrov, D [1 ]
机构
[1] Malardalen univ, Dept Math & Phys, SE-72123 Vasteras, Sweden
关键词
semi-Markov processes; hitting times; upper bounds for exponential moments; test-functions;
D O I
10.1081/STA-120028683
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Necessary and sufficient conditions for the existence of exponential moments for hitting times for semi-Markov processes are found. These conditions and the corresponding upper bounds for exponential moments are given in terms of test-functions. Applications to hitting times for semi-Markov random walks and queuing systems illustrate the results.
引用
收藏
页码:533 / 543
页数:11
相关论文
共 50 条
  • [21] Future pricing through homogeneous semi-Markov processes
    Di Biase, G
    Janssen, J
    Manca, R
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (03) : 241 - 249
  • [22] On the non-Markovianity of quantum semi-Markov processes
    Utagi, Shrikant
    Banerjee, Subhashish
    Srikanth, R.
    QUANTUM INFORMATION PROCESSING, 2021, 20 (12)
  • [23] Maximum spacing estimation for continuous time Markov chains and semi-Markov processes
    Kristi Kuljus
    Bo Ranneby
    Statistical Inference for Stochastic Processes, 2021, 24 : 421 - 443
  • [24] Maximum spacing estimation for continuous time Markov chains and semi-Markov processes
    Kuljus, Kristi
    Ranneby, Bo
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (02) : 421 - 443
  • [25] Hypotheses testing and posterior concentration rates for semi-Markov processes
    Votsi, I
    Gayraud, G.
    Barbu, V. S.
    Limnios, N.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (03) : 707 - 732
  • [26] Hypotheses testing and posterior concentration rates for semi-Markov processes
    I. Votsi
    G. Gayraud
    V. S. Barbu
    N. Limnios
    Statistical Inference for Stochastic Processes, 2021, 24 : 707 - 732
  • [27] Optimal Stopping Time on Semi-Markov Processes with Finite Horizon
    Chen, Fang
    Guo, Xianping
    Liao, Zhong-Wei
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (02) : 408 - 439
  • [28] On functional central limit theorems for semi-Markov and related processes
    Glynn, PW
    Haas, PJ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (03) : 487 - 506
  • [29] A convex analytic framework for ergodic control of semi-Markov processes
    Bhatnagar, S
    Borkar, VS
    MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (04) : 923 - 936
  • [30] Central Limit Theorem for Nonlinear Semi-Markov Reward Processes
    Khorshidian, K.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (04) : 656 - 670