Ultrathin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

被引:14
作者
Alharthi, Sarah A. [1 ]
Benavidez, Tomas E. [1 ]
Garcia, Carlos D. [1 ]
机构
[1] Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USA
基金
美国国家卫生研究院;
关键词
THIN-FILMS; NANOTUBE FILMS; ADSORPTION; PYROLYSIS; GRAPHITE; PERFORMANCE; KINETICS; SPECTRA; OXIDASE; SURFACE;
D O I
10.1021/la3049136
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H-2) to form ultrathin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape.
引用
收藏
页码:3320 / 3327
页数:8
相关论文
共 60 条
[1]   Multiple minima in the ellipsometric error function [J].
Alterovitz, SA ;
Johs, B .
THIN SOLID FILMS, 1998, 313 :124-127
[2]   PERFORMANCE EVALUATION OF AN EASILY PREPARED OPTICALLY TRANSPARENT CARBON-FILM ELECTRODE [J].
ANJO, DM ;
BROWN, S ;
WANG, L .
ANALYTICAL CHEMISTRY, 1993, 65 (03) :317-319
[3]  
[Anonymous], 2009, ANAL CHEM, V81, P1723, DOI [10.1021/ac900238p, 10.1021/AC900238P]
[4]   Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J].
Banks, CE ;
Davies, TJ ;
Wildgoose, GG ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2005, (07) :829-841
[5]   Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes [J].
Barnes, T. M. ;
Van de Lagemaat, J. ;
Levi, D. ;
Rumbles, G. ;
Coutts, T. J. ;
Weeks, C. L. ;
Britz, D. A. ;
Levitsky, I. ;
Peltola, J. ;
Glatkowski, P. .
PHYSICAL REVIEW B, 2007, 75 (23)
[6]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[7]   Shear and AC Field Enhanced Carbon Nanotube Impedance Assay for Rapid, Sensitive, and Mismatch-Discriminating DNA Hybridization [J].
Basuray, Sagnik ;
Senapati, Satyajyoti ;
Aijian, Andrew ;
Mahon, Andrew R. ;
Chang, Hsueh-Chia .
ACS NANO, 2009, 3 (07) :1823-1830
[8]   The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects [J].
Batzill, Matthias .
SURFACE SCIENCE REPORTS, 2012, 67 (3-4) :83-115
[9]   Lithographically Defined Porous Carbon Electrodes [J].
Burckel, D. Bruce ;
Washburn, Cody M. ;
Raub, Alex K. ;
Brueck, Steven R. J. ;
Wheeler, David R. ;
Brozik, Susan M. ;
Polsky, Ronen .
SMALL, 2009, 5 (24) :2792-2796
[10]   Computational, electrochemical, and spectroscopic, studies of acetycholinesterase covalently attached to carbon nanotubes [J].
Cabral, Murilo F. ;
Barrios, Joseph D. ;
Kataoka, Erica M. ;
Machado, Sergio A. S. ;
Carrilho, Emanuel ;
Garcia, Carlos D. ;
Ayon, Arturo A. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 103 :624-629