Angular momentum of a strongly focused Gaussian beam

被引:138
作者
Nieminen, Timo A. [1 ]
Stilgoe, Alexander B. [1 ]
Heckenberg, Norman R. [1 ]
Rubinsztein-Dunlop, Halina [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, Ctr Biophoton & Laser Sci, Brisbane, Qld 4072, Australia
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2008年 / 10卷 / 11期
关键词
optical vortices; orbital angular momentum; non-paraxial beams;
D O I
10.1088/1464-4258/10/11/115005
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A circularly polarized paraxial Gaussian laser beam carries +/- h angular momentum per photon as spin, with zero orbital angular momentum. Focusing the beam with a rotationally symmetric lens cannot change this angular momentum flux, yet the focused beam must have spin vertical bar S(z)vertical bar < h per photon. The remainder of the original spin is converted to orbital angular momentum, manifesting itself as a longitudinal optical vortex at the focus. We investigate the nature of this orbital angular momentum.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
[Anonymous], NACH GES WISS GOTING
[2]   Energy and angular momentum in certain optical problems [J].
Atkinson, RDE .
PHYSICAL REVIEW, 1935, 47 (08) :623-627
[3]   Angular momentum and geometrical phases in tight-focused circularly polarized plane waves [J].
Bomzon, Ze'ev ;
Gu, Min ;
Shamir, Joseph .
APPLIED PHYSICS LETTERS, 2006, 89 (24)
[4]   Device physics vis-a-vis fundamental physics in cold war America - The case of quantum optics [J].
Bromberg, Joan Lisa .
ISIS, 2006, 97 (02) :237-259
[5]  
Crichton J. H., 2000, Electronic Journal of Differential Equations, V4, P37
[6]  
HENRIOT E, 1934, HEBD SEANCES ACAD SC, V198, P1146
[7]   The moment of impulsion of an electromagnetic wave [J].
Humblet, J .
PHYSICA, 1943, 10 :585-587
[8]  
Jackson J.D., 1999, Classical electrodynamics
[9]  
Jauch J M., 1976, The Theory of Photons and Electrons: The Relativistic Quantum Field Theory of Charged Particles With Spin one-Half (Texts and Monographs in Physics), V2nd edn, DOI 10.1007/978-3-642-80951-4
[10]   Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media [J].
Marrucci, L ;
Manzo, C ;
Paparo, D .
PHYSICAL REVIEW LETTERS, 2006, 96 (16)