Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: A virtual modeling experiment

被引:98
作者
Frei, S. [1 ]
Knorr, K. H. [1 ]
Peiffer, S. [1 ]
Fleckenstein, J. H. [2 ]
机构
[1] Univ Bayreuth, Dept Hydrol, DE-95447 Bayreuth, Germany
[2] UFZ Helmholtz Ctr Environm Res, Dept Hydrogeol, Leipzig, Germany
关键词
DISSOLVED ORGANIC-CARBON; WATER-QUALITY; METHANE PRODUCTION; RIPARIAN WETLAND; REDOX PROCESSES; GROUNDWATER; PEATLAND; TRANSPORT; SOIL; NITRATE;
D O I
10.1029/2012JG002012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wetlands provide important ecohydrological services by regulating fluxes of nutrients and pollutants to receiving waters, which can in turn mitigate adverse effects on water quality. Turnover of redox-sensitive solutes in wetlands has been shown to take place in distinct spatial and temporal patterns, commonly referred to as hot spots and hot moments. Despite the importance of such patterns for solute fluxes the mechanistic understanding of their formation is still weak and their existence is often explained by variations in soil properties and diffusive transport only. Here we show that surface micro-topography in wetlands can cause the formation of biogeochemical hot spots solely by the advective redistribution of infiltrating water as a result of complex subsurface flow patterns. Surface and subsurface flows are simulated for an idealized section of a riparian wetland using a fully integrated numerical code for coupled surface-subsurface systems. Biogeochemical processes and transport along advective subsurface flow paths are simulated kinetically using the biogeochemical code PHREEQC. Distinct patterns of biogeochemical activity (expressed as reaction rates) develop in response to micro-topography induced subsurface flow patterns. Simulated vertical pore water profiles for various redox-sensitive species resemble profiles observed in the field. This mechanistic explanation of hot spot formation complements the more static explanations that relate hot spots solely to spatial variability in soil characteristics and can account for spatial as well as temporal variability of biogeochemical activity, which is needed to assess future changes in the biogeochemical turnover of wetland systems.
引用
收藏
页数:18
相关论文
共 81 条
[1]   COMPETITION FOR ELECTRON-DONORS AMONG NITRATE REDUCERS, FERRIC IRON REDUCERS, SULFATE REDUCERS, AND METHANOGENS IN ANOXIC PADDY SOIL [J].
ACHTNICH, C ;
BAK, F ;
CONRAD, R .
BIOLOGY AND FERTILITY OF SOILS, 1995, 19 (01) :65-72
[2]   Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability? [J].
Alewell, C. ;
Paul, S. ;
Lischeid, G. ;
Storck, F. R. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2008, 404 (2-3) :335-342
[3]   What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale? [J].
Antoine, Michael ;
Javaux, Mathieu ;
Bielders, Charles .
ADVANCES IN WATER RESOURCES, 2009, 32 (08) :1297-1310
[4]  
Appelo C.A.J., 2005, Geochemistry, Groundwater and Pollution, V2nd ed., P683, DOI DOI 10.1201/9781439833544
[5]   Transport and thermodynamics constrain belowground carbon turnover in a northern peatland [J].
Beer, Julia ;
Blodau, Christian .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (12) :2989-3002
[6]   A comparison of zero-order, first-order, and Monod biotransformation models [J].
Bekins, BA ;
Warren, E ;
Godsy, EM .
GROUND WATER, 1998, 36 (02) :261-268
[7]   AN IDEALIZED MODEL OF NITROGEN RECYCLING IN MARINE-SEDIMENTS [J].
BILLEN, G .
AMERICAN JOURNAL OF SCIENCE, 1982, 282 (04) :512-541
[8]   Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry [J].
Bishop, K ;
Seibert, J ;
Köher, S ;
Laudon, H .
HYDROLOGICAL PROCESSES, 2004, 18 (01) :185-189
[9]   Biogeochemical zonation due to intrameander hyporheic flow [J].
Boano, F. ;
Demaria, A. ;
Revelli, R. ;
Ridolfi, L. .
WATER RESOURCES RESEARCH, 2010, 46
[10]   Thermal transport modelling in a fully integrated surface/subsurface framework [J].
Brookfield, A. E. ;
Sudicky, E. A. ;
Park, Y. -J. ;
Conant, B., Jr. .
HYDROLOGICAL PROCESSES, 2009, 23 (15) :2150-2164