High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries

被引:156
作者
Liu, Gaozhan [1 ,2 ]
Xie, Dongjiu [1 ]
Wang, Xuelong [2 ,3 ]
Yao, Xiayin [1 ]
Chen, Shaojie [1 ]
Xiao, Ruijuan [3 ]
Li, Hong [3 ]
Xu, Xiaoxiong [1 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
aliovalent substitution; high air-stability; superior lithium ion conductivity; theoretical calculation; all-solid-state lithium battery; ELECTROCHEMICAL PROPERTIES; CHEMICAL-STABILITY; GLASS ELECTROLYTES; SULFIDE GLASS; LI3PS4; GLASS; INTERFACE; CRYSTAL; LISICON; LICOO2;
D O I
10.1016/j.ensm.2018.07.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of new solid electrolytes of Li(3+3)xP(1-x)ZnxS(4-x)O(x) (x = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06) are synthesized successfully via Zn, O co-doping the Li3PS4 glass-ceramic for the first time. The result shows that Li3PS4 aliovalent substitution of 2 mol% ZnO (Li3.06P0.98Zn0.02S3.98O0.02) presents the highest conductivity of 1.12x10(-3) S cm(-1) at room temperature, which is twice that of the pristine Li3PS4. Besides, Li3.06P0.98Zn0.02S3.98O0.02 exhibits excellent stability against humid air, lithium metal and chlorobenzene solvent. The mechanisms of the enhancement of conductivity and air-stability are well understood by conducting first-principles density functional theory (DFT) calculation and Bond-Valence (BV) analysis, and the results well demonstrate that the conductivity and air-stability of Li3PS4 could be improved via Zn, O dualdoping, in which partial P5+ could be substituted by Zn2+, and a part of S2-could be replaced by O2-. Finally, the all-solid-state lithium battery (ASSLB) with bi-layer electrolytes of LiCoO2/Li10GeP2S12/Li3.06P0.98Zn0.02S3.98O0.02/Li is assembled, and it delivers an initial discharge capacity of 139.1 mAh g(-1) at 0.1 C and a capacity retention of 81.0% after 100 cycles at room temperature. This work combines systematical experimental characterizations and sufficient theoretical calculations to develop a new promising sulfide electrolyte with superior lithium ion conductivity and high air-stability for ASSLBs application.
引用
收藏
页码:266 / 274
页数:9
相关论文
共 46 条
[1]   Fast Li-circle plus conducting ceramic electrolytes [J].
Adachi, GY ;
Imanaka, N ;
Aono, H .
ADVANCED MATERIALS, 1996, 8 (02) :127-+
[2]   High power lithium ion battery materials by computational design [J].
Adams, Stefan ;
Rao, R. Prasada .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08) :1746-1753
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   THE AC CONDUCTIVITY OF POLYCRYSTALLINE LISICON, LI2+2XZN1-XGEO4, AND A MODEL FOR INTERGRANULAR CONSTRICTION RESISTANCES [J].
BRUCE, PG ;
WEST, AR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) :662-669
[6]   Surprising Effects upon Inserting Benzene Units into a Quaterthiophene-Based D-A Polymer-Improving Non-Fullerene Organic Solar Cells via Donor Polymer Design [J].
Chen, Shangshang ;
Yao, Huatong ;
Li, Zhengke ;
Awartani, Omar M. ;
Liu, Yuhang ;
Wang, Zheng ;
Yang, Guofang ;
Zhang, Jianquan ;
Ade, Harald ;
Yan, He .
ADVANCED ENERGY MATERIALS, 2017, 7 (12)
[7]   All-solid-state lithium batteries with Li3PS4 glass as active material [J].
Hakari, Takashi ;
Nagao, Motohiro ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
JOURNAL OF POWER SOURCES, 2015, 293 :721-725
[8]   Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery [J].
Haruyama, Jun ;
Sodeyama, Keitaro ;
Tateyama, Yoshitaka .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (01) :286-292
[9]   Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles [J].
Hayashi, Akitoshi ;
Muramatsu, Hiromasa ;
Ohtomo, Takamasa ;
Hama, Sigenori ;
Tatsumisago, Masahiro .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (21) :6320-6326
[10]   Invited Paper: Recent Development of Bulk-Type Solid-State Rechargeable Lithium Batteries with Sulfide Glass-ceramic Electrolytes [J].
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
ELECTRONIC MATERIALS LETTERS, 2012, 8 (02) :199-207