Generalized geometric structures on complex and symplectic manifolds

被引:2
作者
Salvai, Marcos [1 ]
机构
[1] FaMAF CIEM, RA-5000 Cordoba, Argentina
关键词
Generalized complex structure; Interpolation; Kahler; Hypercomplex; Signature; KAHLER METRICS; LIE-ALGEBRAS;
D O I
10.1007/s10231-014-0431-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a smooth manifold M, generalized complex (generalized paracomplex) structures provide a notion of interpolation between complex (paracomplex) and symplectic structures on M. Given a complex manifold (M, j), we define six families of distinguished generalized complex or paracomplex structures on M. Each one of them interpolates between two geometric structures on M compatible with j, for instance, between totally real foliations and Kahler structures, or between hypercomplex and C-symplectic structures. These structures on M are sections of fiber bundles over M with typical fiber G/H for some Lie groups G and H. We determine G and H in each case. We proceed similarly for symplectic manifolds. We define six families of generalized structures on (M, omega), each of them interpolating between two structures compatible with., for instance, between a C-symplectic and a para-Kahler structure (aka bi-Lagrangian foliation).
引用
收藏
页码:1505 / 1525
页数:21
相关论文
共 25 条
[1]   Para-Kahler Einstein metrics on homogeneous manifolds [J].
Alekseevsky, Dimitri V. ;
Medori, Costantino ;
Tomassini, Adriano .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (1-2) :69-72
[2]   Complex product structures on Lie algebras [J].
Andrada, A ;
Salamon, S .
FORUM MATHEMATICUM, 2005, 17 (02) :261-295
[3]   FOUR-DIMENSIONAL LIE ALGEBRAS WITH A PARA-HYPERCOMPLEX STRUCTURE [J].
Blazic, Novica ;
Vukmirovic, Srdjan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (05) :1391-1439
[4]   Anti-Kahlerian manifolds [J].
Borowiec, A ;
Francaviglia, M ;
Volovich, I .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (03) :281-289
[5]   Bochner-Kahler metrics [J].
Bryant, RL .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (03) :623-715
[6]  
Cavalcanti G. R., 2004, J. Symplectic Geo, V2, P393, DOI DOI 10.4310/JSG.2004.V2.N3.A5
[7]   DIRAC MANIFOLDS [J].
COURANT, TJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) :631-661
[8]   Generalized complex structures and Lie brackets [J].
Crainic, Marius .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04) :559-578
[9]  
Cruceanu V, 1996, ROCKY MT J MATH, V26, P83, DOI 10.1216/rmjm/1181072105
[10]  
Datta M, 2011, J SYMPLECT GEOM, V9, P11