What Can We Learn from Global Sensitivity Analysis of Biochemical Systems?

被引:29
作者
Kent, Edward [1 ,2 ]
Neumann, Stefan [3 ]
Kummer, Ursula [3 ]
Mendes, Pedro [1 ,2 ,4 ]
机构
[1] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England
[2] Univ Manchester, Manchester Inst Biotechnol, Manchester, Lancs, England
[3] Das Ctr Organismal Studies Heidelberg BIOQUANT, Dept Modeling Biol Proc, Heidelberg, Germany
[4] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA USA
基金
英国生物技术与生命科学研究理事会;
关键词
ROBUSTNESS; MODELS; BIOLOGY; COPASI;
D O I
10.1371/journal.pone.0079244
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined parameters. Assuming these models represent physiological reality, we explored how the results could change under increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable technique.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism [J].
Achcar, Fiona ;
Kerkhoven, Eduard J. ;
Bakker, Barbara M. ;
Barrett, Michael P. ;
Breitling, Rainer .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (01)
[2]   Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei [J].
Albert, MA ;
Haanstra, JR ;
Hannaert, V ;
Van Roy, J ;
Opperdoes, FR ;
Bakker, BM ;
Michels, PAM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (31) :28306-28315
[3]   Pulsatile Stimulation Determines Timing and Specificity of NF-κB-Dependent Transcription [J].
Ashall, Louise ;
Horton, Caroline A. ;
Nelson, David E. ;
Paszek, Pawel ;
Harper, Claire V. ;
Sillitoe, Kate ;
Ryan, Sheila ;
Spiller, David G. ;
Unitt, John F. ;
Broomhead, David S. ;
Kell, Douglas B. ;
Rand, David A. ;
See, Violaine ;
White, Michael R. H. .
SCIENCE, 2009, 324 (5924) :242-246
[4]   Quantitative performance metrics for robustness in circadian rhythms [J].
Bagheri, Neda ;
Stelling, Joerg ;
Doyle, Francis J., III .
BIOINFORMATICS, 2007, 23 (03) :358-364
[5]   CONTROL ANALYSIS OF METABOLIC SYSTEMS [J].
BURNS, JA ;
CORNISHBOWDEN, A ;
GROEN, AK ;
HEINRICH, R ;
KACSER, H ;
PORTEOUS, JW ;
RAPOPORT, SM ;
RAPOPORT, TA ;
STUCKI, JW ;
TAGER, JM ;
WANDERS, RJA ;
WESTERHOFF, HV .
TRENDS IN BIOCHEMICAL SCIENCES, 1985, 10 (01) :16-16
[6]   Integrative analysis of cell cycle control in budding yeast [J].
Chen, KC ;
Calzone, L ;
Csikasz-Nagy, A ;
Cross, FR ;
Novak, B ;
Tyson, JJ .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (08) :3841-3862
[7]   Quantifying Global Tolerance of Biochemical Systems: Design Implications for Moiety-Transfer Cycles [J].
Coelho, Pedro M. B. M. ;
Salvador, Armindo ;
Savageau, Michael A. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (03)
[8]   LINEAR STEADY-STATE TREATMENT OF ENZYMATIC CHAINS - GENERAL PROPERTIES, CONTROL AND EFFECTOR STRENGTH [J].
HEINRICH, R ;
RAPOPORT, TA .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1974, 42 (01) :89-95
[9]   COPASI- A COmplex PAthway SImulator [J].
Hoops, Stefan ;
Sahle, Sven ;
Gauges, Ralph ;
Lee, Christine ;
Pahle, Juergen ;
Simus, Natalia ;
Singhal, Mudita ;
Xu, Liang ;
Mendes, Pedro ;
Kummer, Ursula .
BIOINFORMATICS, 2006, 22 (24) :3067-3074
[10]   Sensitivity Analysis for Biomedical Models [J].
Hu, Zhenghui ;
Shi, Pengcheng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (11) :1870-1881