EVALUATION OF POLSAR SIMILARITY MEASURES WITH SPECTRAL CLUSTERING

被引:0
作者
Hu, Jingliang [1 ]
Wang, Yuanyuan [2 ]
Ghamisi, Pedram [1 ,2 ]
Zhu, Xiao Xiang [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Cologne, Germany
[2] Tech Univ Munich, Signal Proc Earth Observat SiPEO, Munich, Germany
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Polarimetric SAR; similarity measures; spectral clustering;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Polarimetric Synthetic Aperture Radar (PolSAR) is a valuable remote sensing data source. It is usually challenging to interpret PolSAR data, especially in urban areas, and hense, spatial clustering comes as a powerful tool for the application of PolSAR data. In data clustering, similarity measurement indexes are of great importance. By far, there are quite some similarity measures of PolSAR data. However, to our knowledge, there has no practical and systematic evaluation of the performances of these measures. In this paper, we evaluate seven different similarity measurements of PolSAR data in the context of clustering using the conventional spectral clustering algorithm.
引用
收藏
页码:3254 / 3257
页数:4
相关论文
共 14 条
[1]  
Anfinsen Stian Normann, 2007, P POLINSAR, V7
[2]   Log-euclidean metrics for fast and simple calculus on diffusion tensors [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) :411-421
[3]   Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach [J].
Chen, Jiong ;
Chen, Yilun ;
An, Wentao ;
Cui, Yi ;
Yang, Jian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (05) :1744-1754
[4]   Exploiting Patch Similarity for SAR Image Processing [The nonlocal paradigm] [J].
Deledalle, Charles-Alban ;
Denis, Loic ;
Poggi, Giovanni ;
Tupin, Florence ;
Verdoliva, Luisa .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (04) :69-78
[5]   Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning [J].
Ersahin, Kaan ;
Cumming, Ian G. ;
Ward, Rabab Kreidieh .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :164-174
[6]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[7]   Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering [J].
Kersten, PR ;
Lee, JS ;
Ainsworth, TL .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :519-527
[8]  
Lee JS, 2009, OPT SCI ENG-CRC, P1
[9]   UNSUPERVISED CLASSIFICATION OF POLSAR DATA USING LARGE SCALE SPECTRAL CLUSTERING [J].
Lin, Li-Qi ;
Song, Hui ;
Huang, Ping-Ping ;
Yang, Wen ;
Xu, Xin .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
[10]  
Liu L, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), P830, DOI 10.1109/ICSPCC.2014.6986313