Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia

被引:104
|
作者
Schulze, ED
Turner, NC
Nicolle, D
Schumacher, J
机构
[1] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[2] CSIRO Plant Ind, Wembley, WA 6913, Australia
[3] Currency Creek Eucalyptus Res, Old Reynella, SA 5161, Australia
关键词
aridity gradient; biodiversity; delta C-13 in leaves and wood; drought; soil type; tree rings;
D O I
10.1093/treephys/26.4.479
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Leaves and samples of recent wood of Eucalyptus species were collected along a rainfall gradient parallel to the coast of Western Australia between Perth in the north and Walpole in the south and along a Southwest to northeast transect from Walpole in southwestern Australia, to near Mount Olga in central Australia. The collection included 65 species of Eucalyptus sampled at 73 sites and many of the species were collected at several sites along the rainfall gradient. Specific leaf area (SLA) and isotopic ratio of C-13 to C-12 (delta C-13) of leaves that,grew in 2002, and tree ring growth and VC of individual cell layers of the Wood were measured. Rainfall data were obtained from the Australian Bureau of Meteorology for 29 locations that represented one or a few closely located collection sites. Site-averaged data and species-specific values of delta C-13 decreased with decreasing annual rainfall between 1200 and 300 mm at a rate of 1.63 parts per thousand per 1000 inm decrease in rainfall. Responses became variable in the low rainfall region (< 300 rum), with some species showing decreasing delta C-13 With rainfall. Whereas delta C-13 increased or remained constant in other species. The range of delta C-13 values in the low rainfall region was as large as the range observed at sites receiving >300 mm of annual rainfall. Specific leaf area varied between 2 and 6 m(2) kg(-1) and tended to increase With decreasing annual rainfall in some species, but not all. whereas delta C-13 decreased with SLA. The relationship between delta C-13 and SLA Was highly species and soil-type specific. Leaf-area-based nitrogen (N) content varied between 2 and almost 6 m(-2) and decreased with rainfall. Thus, thicker leaves were associated With higher N content and this compensated for the effect of drought on delta C-13. Nitrogen content was also related to soil type and species identity. Based on a linear mixed model, statistical analysis of the whole data set showed that 27% of the variation in delta C-13 was associated with changes in SLA. 16% with soil type and only 1% with rainfall. Additionally, 21% was associated with species identity. For a subset of sites with > 300 mm rainfall, 43% of the variation was explained by SLA, 13% by soil type and only 3% by rainfall. The species effect decreased to 9% because there were fewer species in the subset of sites. The small effect of rainfall on delta C-13 was further supported by a path analysis that yielded a standardized path coefficient of 0.38 for the effect of rainfall on SLA and -0.50 for the effect of SLA on delta C-13, but an insignificantly low standardized path coefficient of -0.05 for the direct effect of rainfall on VC. Thus, in contrast to our hypothesis that 613 C decreases with rainfall independent of soil type and species, we detected no statistically significant relationship between rainfall and delta C-13 in leaves of trees growing at sites receiving < 300 mm of rainfall annually. Rainfall affected delta C-13 indirectly through soil type (a surrogate for water-holding capacity) across the rainfall gradient. Annual tree rings are not clearly visible in evergreen Eucalyptus species, even in the seasonally cool climate of SW Australia. Generally, visible density transitions in the wood are related not to a strict annual cycle but to periods of growth associated mainly with rainfall. The relationship between delta C-13 of leaves and the width of these stem increments was not statistically significant. Analysis of stem growth periods showed that delta C-13 in wood responded to rainfall events, but carbohydrate storage and reallocation also affected the isotopic signature. Although delta C-13 in wood of any one species varied over a range of 2 to 4%, there was a general relationship between delta C-13 of the leaves and the annual range of delta C-13 in wood. We conclude that species-specific traits are important in understanding the response of Eucalyptus to rainfall and that the diversity of the genus may reflect its response to the large climatic gradient in Australia and to the large annual and inter-annual variations in rainfall at any one location.
引用
收藏
页码:479 / 492
页数:14
相关论文
共 39 条
  • [1] Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia
    Schulze, E. D.
    Nicolle, D.
    Boerner, A.
    Lauerer, M.
    Aas, G.
    Schulze, I.
    TREES-STRUCTURE AND FUNCTION, 2014, 28 (04): : 1125 - 1135
  • [2] Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia
    E. D. Schulze
    D. Nicolle
    A. Boerner
    M. Lauerer
    G. Aas
    I. Schulze
    Trees, 2014, 28 : 1125 - 1135
  • [3] Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia
    Miller, JM
    Williams, RJ
    Farquhar, GD
    FUNCTIONAL ECOLOGY, 2001, 15 (02) : 222 - 232
  • [4] Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient
    Schulze, Ernst-Detlef
    Turner, Neil C.
    Nicolle, Dean
    Schumacher, Jens
    PHYSIOLOGIA PLANTARUM, 2006, 127 (03) : 434 - 444
  • [5] Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia
    Prior, LD
    Bowman, DMJS
    Eamus, D
    AUSTRALIAN JOURNAL OF BOTANY, 2005, 53 (04) : 323 - 335
  • [6] Wood density and leaf size jointly predict woody plant growth rates across (but not within) species along a steep precipitation gradient
    Fajardo, Alex
    Siefert, Andrew
    Laughlin, Daniel C.
    JOURNAL OF ECOLOGY, 2024, 112 (02) : 374 - 388
  • [7] Leaf and wood plasticity of five restinga species in two areas of the South Brazil
    da Silva, Maiara Matilde
    Ferreira de Melo Junior, Joao Carlos
    IHERINGIA SERIE BOTANICA, 2017, 72 (02): : 173 - 180
  • [8] Leaf carbon isotope ratios in three landscape species growing in an arid environment
    Devitt, DA
    Smith, SD
    Neuman, DS
    JOURNAL OF ARID ENVIRONMENTS, 1997, 36 (02) : 249 - 257
  • [9] Effects of leaf and branch removal on carbon assimilation and stem wood density of Eucalyptus grandis seedlings
    D. S. Thomas
    K. D. Montagu
    J. P. Conroy
    Trees, 2006, 20 : 725 - 733
  • [10] Effects of leaf and branch removal on carbon assimilation and stem wood density of Eucalyptus grandis seedlings
    Thomas, D. S.
    Montagu, K. D.
    Conroy, J. P.
    TREES-STRUCTURE AND FUNCTION, 2006, 20 (06): : 725 - 733