Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers

被引:11
作者
Mousavi, Hamze [1 ]
Khodadadi, Jabbar [1 ]
Kurdestany, Jamshid Moradi [2 ]
Yarmohammadi, Zahra [1 ]
机构
[1] Razi Univ, Dept Phys, Kermanshah, Iran
[2] Univ Missouri, Dept Phys & Astron, Columbia, MO 65201 USA
关键词
Graphene; Silicon boron; Boron nitride; Tight-binding; Green's function; TIGHT-BINDING MODEL; CARBON NANOTUBES; GAS; NANORIBBONS; RESISTIVITY;
D O I
10.1016/j.physleta.2016.09.043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Density of states, electrical and thermal conductivities of electrons in graphene, boron nitride and silicon boron single sheets are studied within the tight-binding Hamiltonian model and Green's function formalism, based on the linear response theory. The results show that while boron nitride keeps significantly the lowest amounts overall with an interval of zero value in low temperatures, due to its insulating nature, graphene exhibits the most electrical and thermal conductivities, slightly higher than silicon boron except for low temperature region where the latter surpasses, owing to its metallic character. This work might make ideas for creating new electronic devices based on honeycomb nanostructures. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:3823 / 3827
页数:5
相关论文
共 36 条
[11]   First-principles study of the optical properties of BeO in its ambient and high-pressure phases [J].
Groh, David ;
Pandey, Ravindra ;
Sahariah, Munima B. ;
Amzallag, Emilie ;
Baraille, Isabelle ;
Rerat, Michel .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2009, 70 (05) :789-795
[12]   Metallic behavior in low-dimensional honeycomb SiB crystals: A first-principles prediction of atomic structure and electronic properties [J].
Hansson, Anders ;
De Brito Mota, F. ;
Rivelino, Roberto .
PHYSICAL REVIEW B, 2012, 86 (19)
[13]   Thermal conductivity of single-walled carbon nanotubes [J].
Hone, J ;
Whitney, M ;
Piskoti, C ;
Zettl, A .
PHYSICAL REVIEW B, 1999, 59 (04) :R2514-R2516
[14]   Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite [J].
Im, Hyungu ;
Kim, Jooheon .
CARBON, 2012, 50 (15) :5429-5440
[15]   Thermal transport in the Falicov-Kimball model on a Bethe lattice [J].
Joura, AV ;
Demchenko, DO ;
Freericks, JK .
PHYSICAL REVIEW B, 2004, 69 (16) :165105-1
[16]   Electronic thermal conductivity in suspended and supported bilayer graphene [J].
Katti, V. S. ;
Kubakaddi, S. S. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 47 :188-192
[17]   The Electronic Thermal Conductivity of Graphene [J].
Kim, Tae Yun ;
Park, Cheol-Hwan ;
Marzari, Nicola .
NANO LETTERS, 2016, 16 (04) :2439-2443
[18]  
Lu M, 1996, APPL PHYS LETT, V68, P622, DOI 10.1063/1.116488
[19]   Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder [J].
Marinho, Bernardo ;
Ghislandi, Marcos ;
Tkalya, Evgeniy ;
Koning, Cor E. ;
de With, Gijsbertus .
POWDER TECHNOLOGY, 2012, 221 :351-358
[20]   Electronic heat capacity and conductivity of gapped graphene [J].
Mousavi, Hamze ;
Khodadadi, Jabbar .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 50 :11-16