Using ubiquitin to follow the metabolic fate of a protein

被引:87
作者
Levy, F [1 ]
Johnsson, N [1 ]
Rumenapf, T [1 ]
Varshavsky, A [1 ]
机构
[1] CALTECH,DIV BIOL,PASADENA,CA 91125
关键词
proteolysis; pulse-chase; half-life; N-end rule; cell culture;
D O I
10.1073/pnas.93.10.4907
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a method that can be used to produce equimolar amounts of two or more specific proteins in a cell. In this approach, termed the ubiquitin/protein/reference (UPR) technique, a reference protein and a protein of interest are synthesized as a polyprotein separated by a ubiquitin moiety. This tripartite fusion is cleaved, cotranslationally or nearly so, by ubiquitin-specific processing proteases after the last residue of ubiquitin, producing equimolar amounts of the protein of interest and the reference protein bearing a C-terminal ubiquitin moiety. In applications such as pulse-chase analysis, the UPR technique can compensate for the scatter of immunoprecipitation yields, sample volumes, and other sources of sample-to-sample variation. In particular, this method allows a direct comparison of proteins' metabolic stabilities from the pulse data alone. We used UPR to examine the N-end rule (a relation between the in vivo half-life of a protein and the identity of its N-terminal residue) in L cells, a mouse cell line. The increased accuracy afforded by the UPR technique underscores insufficiency of the current ''half-life'' terminology, because in vivo degradation of many proteins deviates from first-order kinetics. We consider this problem and discuss other applications of UPR.
引用
收藏
页码:4907 / 4912
页数:6
相关论文
共 23 条
[1]   A RECOGNITION COMPONENT OF THE UBIQUITIN SYSTEM IS REQUIRED FOR PEPTIDE-TRANSPORT IN SACCHAROMYCES-CEREVISIAE [J].
ALAGRAMAM, K ;
NAIDER, F ;
BECKER, JM .
MOLECULAR MICROBIOLOGY, 1995, 15 (02) :225-234
[2]   COTRANSLATIONAL PROCESSING AND PROTEIN-TURNOVER IN EUKARYOTIC CELLS [J].
ARFIN, SM ;
BRADSHAW, RA .
BIOCHEMISTRY, 1988, 27 (21) :7979-7984
[3]  
Ausubel F.M., 1992, CURRENT PROTOCOLS MO
[4]   THE DEGRADATION SIGNAL IN A SHORT-LIVED PROTEIN [J].
BACHMAIR, A ;
VARSHAVSKY, A .
CELL, 1989, 56 (06) :1019-1032
[5]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[6]   YEAST N-TERMINAL AMIDASE - A NEW ENZYME AND COMPONENT OF THE N-END RULE PATHWAY [J].
BAKER, RT ;
VARSHAVSKY, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :12065-12074
[7]   INHIBITION OF THE N-END RULE PATHWAY IN LIVING CELLS [J].
BAKER, RT ;
VARSHAVSKY, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (04) :1090-1094
[8]  
BAKER RT, 1992, J BIOL CHEM, V267, P23364
[9]   SINDBIS VIRUS-RNA POLYMERASE IS DEGRADED BY THE N-END RULE PATHWAY [J].
DEGROOT, RJ ;
RUMENAPF, T ;
KUHN, RJ ;
STRAUSS, EG ;
STRAUSS, JH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (20) :8967-8971
[10]   THE TAILS OF UBIQUITIN PRECURSORS ARE RIBOSOMAL-PROTEINS WHOSE FUSION TO UBIQUITIN FACILITATES RIBOSOME BIOGENESIS [J].
FINLEY, D ;
BARTEL, B ;
VARSHAVSKY, A .
NATURE, 1989, 338 (6214) :394-401