ON A POSITIVITY PRESERVATION PROPERTY FOR SCHRODINGER OPERATORS ON RIEMANNIAN MANIFOLDS

被引:1
作者
Milatovic, Ognjen [1 ]
机构
[1] Univ N Florida, Dept Math & Stat, Jacksonville, FL 32224 USA
关键词
Non-negative Ricci curvature; positivity preservation; Riemannian manifold; Schrodinger operator; self-adjoint; singular potential; ESSENTIAL SELF-ADJOINTNESS; VECTOR-BUNDLES;
D O I
10.1090/proc/12701
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a positivity preservation property for Schrodinger operators with singular potential on geodesically complete Riemannian manifolds with non-negative Ricci curvature. We apply this property to the question of self-adjointness of the maximal realization of the corresponding operator.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 25 条
[1]  
[Anonymous], 2006, Adv. Stud. Pure Math
[2]   DENSITY PROBLEMS ON VECTOR BUNDLES AND MANIFOLDS [J].
Bandara, Lashi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) :2683-2695
[3]   Essential self-adjointness of Schrodinger-type operators on manifolds [J].
Braverman, M ;
Milatovic, O ;
Shubin, M .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) :641-692
[4]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[5]   Continuity properties of integral kernels associated with Schrodinger operators on manifolds [J].
Bruening, Jochen ;
Geyler, Vladimir ;
Pankrashkin, Konstantin .
ANNALES HENRI POINCARE, 2007, 8 (04) :781-816
[6]  
Cycon H.L., 1987, TEXTS MONOGRAPHS PHY
[7]  
DEVINATZ A, 1980, J OPERAT THEOR, V4, P25
[8]  
FUKUSHIMA M., 2011, De Gruyter Stud. Math.
[9]  
Grigor'yan Alexander, 2009, AMS IP STUDIES ADV M, V47
[10]   Essential selfadjointness of singular magnetic Schrodinger operators on Riemannian manifolds [J].
Grummt, Robert ;
Kolb, Martin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :480-489