Multiple solutions for a nonhomogeneous Schrodinger-Maxwell system in R3

被引:33
作者
Jiang, Yongsheng [1 ,2 ]
Wang, Zhengping [1 ]
Zhou, Huan-Song [1 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Peoples R China
关键词
Multiple solutions; Elliptic equation; Variational method; Nonhomogeneous; Schrodinger-Maxwell system; SOLITARY WAVES; STANDING WAVES; EXISTENCE; EQUATION; STABILITY;
D O I
10.1016/j.na.2013.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers the following nonhomogeneous Schrodinger-Maxwell system: {-Delta u + u + lambda phi(x)u = vertical bar u vertical bar(p-1)u + g(x), x is an element of R-3, -Delta phi = u(2), x is an element of R-3, (SM) where lambda > 0, p is an element of (1, 5), and 0 <= g(x) = g(vertical bar x vertical bar) is an element of L-2(R-3). There seem to be no results on the existence of multiple solutions to problem (SM) for p is an element of (1, 3). In this paper, we find that there is a constant C-p > 0 such that problem (SM) has at least two solutions for all p is an element of (1, 5) provided that parallel to g parallel to(L2) <= C-p, however, for p is an element of (1, 2] we need lambda > 0 is small. Moreover, C-p = (p-1)/2p [(p+1)Sp+1/2p](1/(p-1)), where S is the Sobolev constant. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 20 条
[1]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[2]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[5]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[6]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]   Multiple solutions for nonhomogeneous Schrodinger-Maxwell and Klein- Gordon-Maxwell equations on R 3 [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (05) :559-574
[9]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
[10]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906