Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance

被引:770
作者
Beidaghi, Majid [1 ]
Wang, Chunlei [1 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
关键词
micro-supercapacitors; graphene; high power handling; photolithography lift-off; electrostatic spray deposition; CARBIDE-DERIVED CARBON; GRAPHITE OXIDE; FILMS;
D O I
10.1002/adfm.201201292
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel method for fabricating micro-patterned interdigitated electrodes based on reduced graphene oxide (rGO) and carbon nanotube (CNT) composites for ultra-high power handling micro-supercapacitor application is reported. The binder-free microelectrodes were developed by combining electrostatic spray deposition (ESD) and photolithography lift-off methods. Without typically used thermal or chemical reduction, GO sheets are readily reduced to rGO during the ESD deposition. Electrochemical measurements show that the in-plane interdigital design of the microelectrodes is effective in increasing accessibility of electrolyte ions in-between stacked rGO sheets through an electro-activation process. Addition of CNTs results in reduced restacking of rGO sheets and improved energy and power density. Cyclic voltammetry (CV) measurements show that the specific capacitance of the micro-supercapacitor based on rGOCNT composites is 6.1 mF cm(-2) at 0.01 V s(-1). At a very high scan rate of 50 V s(-1), a specific capacitance of 2.8 mF cm(-2) (stack capacitance of 3.1 F cm(-3)) is recorded, which is an unprecedented performance for supercapacitors. The addition of CNT, electrolyte-accessible and binder-free microelectrodes, as well as an interdigitated in-plane design result in a high-frequency response of the micro-supercapacitors with resistive-capacitive time constants as low as 4.8 ms. These characteristics suggest that interdigitated rGOCNT composite electrodes are promising for on-chip energy storage application with high power demands.
引用
收藏
页码:4501 / 4510
页数:10
相关论文
共 34 条
[1]   Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes [J].
Beidaghi, Majid ;
Wang, Chunlei .
ELECTROCHIMICA ACTA, 2011, 56 (25) :9508-9514
[2]   Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors [J].
Beidaghi, Majid ;
Chen, Wei ;
Wang, Chunlei .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2403-2409
[3]   Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) :17615-17624
[4]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[5]   Chemically Active Reduced Graphene Oxide with Tunable C/O Ratios [J].
Compton, Owen C. ;
Jain, Bonny ;
Dikin, Dmitriy A. ;
Abouimrane, Ali ;
Amine, Khalil ;
Nguyen, SonBinh T. .
ACS NANO, 2011, 5 (06) :4380-4391
[6]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[7]  
Gao W, 2011, NAT NANOTECHNOL, V6, P496, DOI [10.1038/NNANO.2011.110, 10.1038/nnano.2011.110]
[8]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[9]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[10]   Continuous carbide-derived carbon films with high volumetric capacitance [J].
Heon, Min ;
Lofland, Samuel ;
Applegate, James ;
Nolte, Robert ;
Cortes, Emma ;
Hettinger, Jeffrey D. ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Huang, Peihua ;
Brunet, Magali ;
Gogotsi, Yury .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (01) :135-138