The Jacobian Conjecture: Linear triangularization for homogeneous polynomial maps in dimension three

被引:17
作者
de Bondt, M [1 ]
van den Essen, A [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Math, NL-6500 GL Nijmegen, Netherlands
关键词
D O I
10.1016/j.jalgebra.2005.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field of characteristic zero and F: k(3) -> k(3) a polynomial map of the form F = x + H, where H is homogeneous of degree d >= 2. We show that the Jacobian Conjecture is true for such mappings. More precisely, we show that if JH is nilpotent there exists an invertible linear map T such that T-1 HT = (0, h(2)(x(1)), h(3)(x(1), x(2))), where the hi are homogeneous of degree d. As a consequence of this result, we show that all generalized Druzkowski mappings F = x + H (x(1) + L-1(d),..., x(n) + L-n(d)) where L-i are linear forms for all i and d >= 2, are linearly triangularizable if J H is nilpotent and rk JH <= 3. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:294 / 306
页数:13
相关论文
共 13 条
[1]   THE JACOBIAN CONJECTURE - REDUCTION OF DEGREE AND FORMAL EXPANSION OF THE INVERSE [J].
BASS, H ;
CONNELL, EH ;
WRIGHT, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :287-330
[2]   Power linear keller maps of rank two are linearly triangularizable [J].
Cheng, CCA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 195 (02) :127-130
[3]   The discrete Markus-Yamabe problem [J].
Cima, A ;
Gasull, A ;
Manosas, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (03) :343-354
[4]  
DEBONDT M, IN PRESS P AM MATH S
[5]  
DEBONDT M, UNPUB HOMOGENEOUS QU
[6]  
Gordan P., 1876, Math. Ann., V10, P547, DOI 10.1007/BF01442264
[7]  
Hubbers E, 1994, THESIS U NIJMEGEN
[8]  
OLECH C, 1995, P INT M ORD DIFF EQ, P127
[9]  
RUSEK K, 1989, I MATH POL AC SCI IM
[10]  
SCHINZEL A, 1982, SELECTED TOPIC POLYN