Almost sure asymptotic for Ornstein-Uhlenbeck processes of Poisson potential

被引:0
作者
Xing, Fei [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
Ornstein-Uhlenbeck process; Poisson potential; Feynman-Kac formula; Principle eigenvalue; PARABOLIC ANDERSON MODEL;
D O I
10.1016/j.spl.2012.07.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The objective of this paper is to study the large time asymptotic of the following exponential moment: E-x exp{+/- integral(1)(0) V(X(s)) ds}, where {X(s)) is a d-dimensional Ornstein-Uhlenbeck process and {V(x)}(x is an element of R)(d) is a homogeneous ergodic random Poisson potential. It turns out that the positive/negative exponential moment has e(ct) growth/decay rate, which is different from the Brownian motion model studied by Carmona and Molchanov (1995) for positive exponential moment and Sznitman (1993) for negative exponential moment. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2091 / 2102
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1994, Continuous martingales and Brownian motion
[2]   STATIONARY PARABOLIC ANDERSON MODEL AND INTERMITTENCY [J].
CARMONA, RA ;
MOLCHANOV, SA .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (04) :433-453
[3]  
Chen X., 2011, ANN PROBAB
[4]  
Chen X., 2009, Mathematical Surveys and Monographs., V157
[5]  
Dunkl C. F., 2014, Encyclopedia of Mathematics and its Applications, V2
[6]  
Evens L.C., 1998, GRADUATE STUDIES MAT, V19
[7]  
Gärtner J, 2005, INTERACTING STOCHASTIC SYSTEMS, P153, DOI 10.1007/3-540-27110-4_8
[8]   Almost sure asymptotics for the continuous parabolic Anderson model [J].
Gärtner, J ;
König, W ;
Molchanov, SA .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 118 (04) :547-573
[9]  
GETOOR RK, 1959, PAC J MATH, V9, P449
[10]  
Li WV, 2001, HANDB STAT, V19, P533, DOI 10.1016/S0169-7161(01)19019-X