The Brauer group and the Brauer-Manin set of products of varieties

被引:22
作者
Skorobogatov, Alexei N. [1 ,2 ]
Zarhin, Yuri G. [3 ,4 ,5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[4] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142292, Russia
[5] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
关键词
Brauer group; Brauer-Manin obstruction; ABELIAN-VARIETIES; FINITENESS THEOREM; FIELDS;
D O I
10.4171/JEMS/445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be smooth and projective varieties over a field k finitely generated over Q, and let (X) over bar and (Y) over bar be the varieties over an algebraic closure of k obtained from X and Y, respectively, by extension of the ground field. We show that the Galois invariant subgroup of Br((X) over bar) circle plus Br((Y) over bar) has finite index in the Galois invariant subgroup of Br((X) over bar x (Y) over bar). This implies that the cokernel of the natural map Br(X) circle plus Br(Y) -> Br(X x Y) is finite when k is a number field. In this case we prove that the Brauer-Manin set of the product of varieties is the product of their Brauer-Manin sets.
引用
收藏
页码:749 / 768
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 1968, Advanced Studies in Pure Mathematics, V3, P46
[2]  
Chevalley C., 1954, Theorie de groupes de Lie, VIII
[3]  
Faltings G., 1984, RATIONAL POINTS ASPE, V75, P381
[4]  
Faltings G., 1983, Invent. Math, V73, P349, DOI [DOI 10.1007/BF01388432, 10.1007/BF01388432]
[5]  
Faltings G., 1984, RATIONAL POINTS ASPE
[6]  
Harari D., 2013, London Math. Soc. Lecture Note Ser., V405, P250
[7]  
HARPAZ Y, 2013, LONDON MATH SOC LECT, V405, P280
[8]  
Hatcher A., 2002, Algebraic topology
[9]  
Milne J. S., 2004, ARITHMETIC DUALITY T
[10]  
Milne J. S., 1980, ETALE COHOMOLOGY