Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology

被引:11
作者
Cosentino, S. [1 ,2 ,3 ]
Mirabella, S. [1 ,2 ]
Liu, Pei [3 ]
Le, Son T. [3 ]
Miritello, M. [1 ,2 ]
Lee, S. [3 ]
Crupi, I. [1 ,2 ]
Nicotra, G. [4 ]
Spinella, C. [4 ]
Paine, D. [3 ]
Terrasi, A. [1 ,2 ]
Zaslavsky, A. [3 ]
Pacifici, D. [3 ]
机构
[1] Univ Catania, MATIS IMM CNR, I-95123 Catania, Italy
[2] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
[4] IMM CNR, I-95121 Catania, Italy
基金
美国国家科学基金会;
关键词
Germanium; Nanocluster; High-efficiency photodetectors; Gain; Response time; WELL INFRARED PHOTODETECTORS; NANOCRYSTALS; MECHANISM; SILICON;
D O I
10.1016/j.tsf.2013.09.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we investigate the spectral response of metal-oxide-semiconductor photodetectors based on Ge nanoclusters (NCs) embedded in a silicon dioxide (SiO2) matrix. The role of GeNC size and density on the spectral response was evaluated by comparing the performance of PDs based on either densely packed arrays of 2 nm-diameter NCs or a more sparse array of 8 nm-diameter Ge NCs. Our Ge NC photodetectors exhibit a high spectral responsivity in the 500-1000 nm range with internal quantum efficiency of similar to 700% at -10 V, and with NC array parameters such as NC density and size playing a crucial role in the photoconductive gain and response time. We find that the configuration with a more dispersed array of NCs ensures a faster photoresponse, due to the larger fraction of electrically-active NCs and the partial suppression of recombination centers. The photoconduction mechanism, assisted by trapping of photo-generated holes in Ge NCs, is discussed for different excitation power and applied bias conditions. Our results provide guidelines for further optimization of high-efficiency Ge NC photodetectors. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:551 / 555
页数:5
相关论文
共 20 条
[1]   Quantum confinement in Si and Ge nanostructures [J].
Barbagiovanni, E. G. ;
Lockwood, D. J. ;
Simpson, P. J. ;
Goncharova, L. V. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (03)
[2]   Modeling of stress-induced leakage current in ultrathin oxides with the trap-assisted tunneling mechanism [J].
Chou, AI ;
Lai, K ;
Kumar, K ;
Chowdhury, P ;
Lee, JC .
APPLIED PHYSICS LETTERS, 1997, 70 (25) :3407-3409
[3]  
Conibeer G, 2007, MATER TODAY, V10, P11
[4]   High-efficiency silicon-compatible photodetectors based on Ge quantum dots [J].
Cosentino, S. ;
Liu, Pei ;
Le, Son T. ;
Lee, S. ;
Paine, D. ;
Zaslavsky, A. ;
Pacifici, D. ;
Mirabella, S. ;
Miritello, M. ;
Crupi, I. ;
Terrasi, A. .
APPLIED PHYSICS LETTERS, 2011, 98 (22)
[5]   The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica [J].
Cosentino, Salvatore ;
Mirabella, Salvatore ;
Miritello, Maria ;
Nicotra, Giuseppe ;
Lo Savio, Roberto ;
Simone, Francesca ;
Spinella, Corrado ;
Terrasi, Antonio .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-7
[6]   The structural and luminescence properties of porous silicon [J].
Cullis, AG ;
Canham, LT ;
Calcott, PDJ .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) :909-965
[7]  
de Sousa J.S., 2007, APPL PHYS LETT, V90
[8]   CONTACT AND DISTRIBUTED EFFECTS IN QUANTUM-WELL INFRARED PHOTODETECTORS [J].
ERSHOV, M ;
RYZHII, V ;
HAMAGUCHI, C .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3147-3149
[9]   Current transport properties of SiO2 films containing Ge nanocrystals [J].
Fujii, M ;
Mamezaki, O ;
Hayashi, S ;
Yamamoto, K .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (03) :1507-1512
[10]   Transient photocurrent overshoot in quantum-well infrared photodetectors [J].
Letov, V ;
Ershov, M ;
Matsik, SG ;
Perera, AGU ;
Liu, HC ;
Wasilewski, ZR ;
Buchanan, M .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2094-2096