Dimensional reduction for energies with linear growth involving the bending moment

被引:12
作者
Babadjian, Jean-Francois [1 ]
Zappale, Elvira [2 ]
Zorgati, Hamdi
机构
[1] Univ Grenoble 1, Lab Jean Kuntzmann, F-38041 Grenoble 9, France
[2] Univ Salerno, DIIMA, I-84084 Fisciano, SA, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2008年 / 90卷 / 06期
关键词
Dimension reduction; Gamma-convergence; Functions of bounded variation; Tangent measures;
D O I
10.1016/j.matpur.2008.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gamma-convergence analysis is used to perform a 3D-2D dimension reduction of variational problems with linear growth. The adopted scaling gives rise to a nonlinear membrane model which, because of the presence of higher order external loadings inducing a bending moment, may depend on the average in the transverse direction of a Cosserat vector field, as well as on the deformation of the mid-plane. The assumption of linear growth on the energy leads to an asymptotic analysis in the spaces of measures and of functions with bounded variation. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:520 / 549
页数:30
相关论文
共 20 条
[1]   RANK ONE PROPERTY FOR DERIVATIVES OF FUNCTIONS WITH BOUNDED VARIATION [J].
ALBERTI, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :239-274
[2]   ON THE RELAXATION IN BV(OMEGA R(M)) OF QUASI-CONVEX INTEGRALS [J].
AMBROSIO, L ;
DALMASO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 109 (01) :76-97
[3]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[4]   Lower semicontinuity of quasi-convex bulk energies in SBV and integral representation in dimension reduction [J].
Babadjian, Jean-Francois .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (06) :1921-1950
[5]   Quasistatic evolution of a brittle thin film [J].
Babadjian, JF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (01) :69-118
[6]   Spatial heterogeneity in 3D-2D dimensional reduction [J].
Babadjian, JF ;
Francfort, GA .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2005, 11 (01) :139-160
[7]   Bending moment in membrane theory [J].
Bouchitté, G ;
Fonseca, I ;
Mascarenhas, ML .
JOURNAL OF ELASTICITY, 2003, 73 (1-3) :75-99
[8]   A global method for relaxation in W1,p and in SBVp [J].
Bouchitté, G ;
Fonseca, I ;
Leoni, G ;
Mascarenhas, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (03) :187-242
[9]   A global method for relaxation [J].
Bouchitté, G ;
Fonseca, I ;
Mascarenhas, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 145 (01) :51-98
[10]  
Braides A, 2000, INDIANA U MATH J, V49, P1367