Runge-Kutta methods for Stratonovich stochastic differential equation systems with commutative noise

被引:33
作者
Rössler, A [1 ]
机构
[1] TH Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
stochastic differential equations; weak approximation; Runge-Kutta methods; numerical methods;
D O I
10.1016/j.cam.2003.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of explicit stochastic Runge-Kutta (SRK) methods for Stratonovich stochastic differential equation systems w.r.t. m-dimensional Wiener processes satisfying a commutativity condition is developed. General conditions for the coefficients of the SRK method assuring convergence with order two in the weak sense are presented. Due to the commutativity condition, no correlated random variables have to be generated for the considered Runge-Kutta methods. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:613 / 627
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1999, BROWNIAN MOTION STOC
[2]   General order conditions for stochastic Runge-Kutta methods for both commuting and non-commuting stochastic ordinary differential equation systems [J].
Burrage, K ;
Burrage, PM .
APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) :161-177
[3]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[4]  
Kloeden P. E., 1999, NUMERICAL SOLUTION S, DOI DOI 10.1007/978-3-662-12616-5
[5]  
KOMORI Y, 1995, STABLE ROW TYPE WEAK, V932, P29
[6]  
ksendal B., 1998, Stochastic Differential Equations: An Introduction with Applications, V6th, DOI [10.1007/978-3-662-03620-4, DOI 10.1007/978-3-662-03620-4]
[7]   Adaptive schemes for the numerical solution of SDEs -: a comparison [J].
Lehn, J ;
Rössler, A ;
Schein, O .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) :297-308
[8]  
Mackevicius V., 1994, Lith. Math. J, V34, P183, DOI [10.1007/BF02333416, DOI 10.1007/BF02333416]
[9]  
MAUTHNER S, 1999, 578 VDI 10