PARTIAL SMOOTHNESS, TILT STABILITY, AND GENERALIZED HESSIANS

被引:54
作者
Lewis, A. S. [1 ]
Zhang, S. [1 ]
机构
[1] Cornell Univ, ORIE, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
variational analysis; nonsmooth optimization; second-order; sensitivity analysis; prox-regular; subdifferential continuity; partial smoothness; generalized Hessian; tilt stability; 2ND-ORDER; OPTIMALITY;
D O I
10.1137/110852103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare two recent variational-analytic approaches to second-order conditions and sensitivity analysis for nonsmooth optimization. We describe a broad setting where computing the generalized Hessian of Mordukhovich is easy. In this setting, the idea of tilt stability introduced by Poliquin and Rockafellar is equivalent to a classical smooth second-order condition.
引用
收藏
页码:74 / 94
页数:21
相关论文
共 23 条
[1]  
[Anonymous], SIAM P APPL MATH
[2]  
[Anonymous], 1998, Variational Analysis
[3]  
Artacho FJA, 2008, J CONVEX ANAL, V15, P365
[4]   Generic Optimality Conditions for Semialgebraic Convex Programs [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Lewis, Adrian S. .
MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (01) :55-70
[5]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[6]  
Dontchev AL, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87821-8_1
[7]   A study of tilt-stable optimality and sufficient conditions [J].
Eberhard, A. ;
Wenczel, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) :1260-1281
[8]  
Hare WL, 2004, J CONVEX ANAL, V11, P251
[9]   On the co-derivative of normal cone mappings to inequality systems [J].
Henrion, R. ;
Outrata, J. ;
Surowiec, T. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :1213-1226
[10]  
Lee JM., 2006, Introduction to Smooth Manifolds