Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride and 4, 4'-oxydianiline

被引:25
作者
Fei, Zhifang [1 ,2 ]
Yang, Zichun [1 ,2 ]
Chen, Guobing [1 ,2 ]
Li, Kunfeng [1 ,2 ]
机构
[1] Naval Univ Engn, Sch Power Engn, Wuhan 430033, Hubei, Peoples R China
[2] Naval Univ Engn, Inst High Temp Struct Composite Mat Naval Ship, Wuhan 430033, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Silica aerogel; Polyimide; Thermal stability; Sol-gel preparation; MECHANICAL-PROPERTIES; INSULATION PROPERTIES; RAPID SYNTHESIS; AMINE; EPOXY;
D O I
10.1007/s10971-017-4566-x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polyimide cross-linked silica aerogels with different weight percentages of polyimide were prepared through sol-gel technology and supercritical CO2 fluid drying technology. Tetraethoxysilane (TEOS) was used as a silica source precursor, 3-aminopropyltriethoxysilane (APTES) end-capped polyimide was used as a cross-linking agent, derived from 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride (BPDA) and 4, 4'-oxydianiline (ODA). The acid produced during the imidization process catalyzed the hydrolysis reaction without additional catalyst. After condensation reaction catalyzed by ammonium hydroxide solution, the polyimide cross-linked silica gels were obtained and then dried in supercritical CO2. The polyimide cross-linked silica aerogels have low density (0.132 similar to 0.187 g/cm(3)), high specific surface area (623-741 m(2)/g), low thermal conductivity (0.0306 similar to 0.0347 W/m K at room temperature), relatively high compressive strength (1.03 similar to 3.82 MPa) and high thermal decomposition temperature (360 A degrees C). This research provided a simple and efficient method that used the polyimide as a strengthening phase to improve the mechanical properties of TEOS-based silica aerogels. [GRAPHICS] .
引用
收藏
页码:506 / 513
页数:8
相关论文
共 33 条
[1]   Novel epoxy-silica nano-composites using epoxy-modified silica hyper-branched structure [J].
Ahmad, Z. ;
Al-Sagheer, Fakhriea .
PROGRESS IN ORGANIC COATINGS, 2015, 80 :65-70
[2]  
[Anonymous], 2011, AEROGELS HDB, DOI DOI 10.1007/978-1-4419-7589-8
[3]   Flexible, low-density polymer crosslinked silica aerogels [J].
Capadona, Lynn A. ;
Meador, Mary Ann B. ;
Alunni, Antonella ;
Fabrizio, Eve F. ;
Vassilaras, Plousia ;
Leventis, Nicholas .
POLYMER, 2006, 47 (16) :5754-5761
[4]   Toward aerogel based thermal superinsulation in buildings: A comprehensive review [J].
Cuce, Erdem ;
Cuce, Pinar Mert ;
Wood, Christopher J. ;
Riffat, Saffa B. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 34 :273-299
[5]  
Gao Qingfu, 2009, Journal of the Chinese Ceramic Society, V37, P1
[6]   Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite [J].
Ge, Dengteng ;
Yang, Lili ;
Li, Yao ;
Zhao, JiuPeng .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (52-54) :2610-2615
[7]   Clay reinforced polyimide/silica hybrid aerogel [J].
Guo, Jiao ;
Nguyen, Baochau N. ;
Li, Lichun ;
Meador, Mary Ann B. ;
Scheiman, Daniel A. ;
Cakmak, Miko .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (24) :7211-7221
[8]   Aerogel applications [J].
Hrubesh, LW .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1998, 225 (1-3) :335-342
[9]   Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts [J].
Karout, A ;
Buisson, P ;
Perrard, A ;
Pierre, AC .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2005, 36 (02) :163-171
[10]   Aerogel-based thermal superinsulation: an overview [J].
Koebel, Matthias ;
Rigacci, Arnaud ;
Achard, Patrick .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2012, 63 (03) :315-339